"Ramanujan's Cubic Continued fractions"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
| 48번째 줄: | 48번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">articles</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">articles</h5> | ||
| + | * A new proof of two identities involving Ramanujan’s cubic continued fraction<br> | ||
| + | ** Chan, H.-C, 2010<br> | ||
* [http://arxiv.org/abs/math/0502323 On Ramanujan's cubic continued fraction and explicit evaluations of theta-functions]<br> | * [http://arxiv.org/abs/math/0502323 On Ramanujan's cubic continued fraction and explicit evaluations of theta-functions]<br> | ||
| − | ** | + | ** C. Adiga, T. Kim, M.S.Mahadeva Naika, H. S. Madhusudhan, 2005<br> |
| − | + | * Ramanujan's cubic continued fraction and Ramanujan type congruences for a certain partition function.<br> | |
| − | * | + | ** Chan, H.-C, Int. J. Number Theory<br> |
| − | ** | ||
| − | |||
| − | |||
* [http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7343.pdf On Ramanujan’s cubic continued fraction]<br> | * [http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7343.pdf On Ramanujan’s cubic continued fraction]<br> | ||
** Heng Huat Chan, ACTA ARITHMETICA. LXXIII.4 (1995)<br> | ** Heng Huat Chan, ACTA ARITHMETICA. LXXIII.4 (1995)<br> | ||
2010년 7월 22일 (목) 04:36 판
introduction
\({1 \over 1+} {q+q^2 \over 1+} {q^{2}+a^{4} \over 1+} {q^3+q^6 \over 1+}{\cdots} \)
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
articles
- A new proof of two identities involving Ramanujan’s cubic continued fraction
- Chan, H.-C, 2010
- Chan, H.-C, 2010
- On Ramanujan's cubic continued fraction and explicit evaluations of theta-functions
- C. Adiga, T. Kim, M.S.Mahadeva Naika, H. S. Madhusudhan, 2005
- C. Adiga, T. Kim, M.S.Mahadeva Naika, H. S. Madhusudhan, 2005
- Ramanujan's cubic continued fraction and Ramanujan type congruences for a certain partition function.
- Chan, H.-C, Int. J. Number Theory
- Chan, H.-C, Int. J. Number Theory
- On Ramanujan’s cubic continued fraction
- Heng Huat Chan, ACTA ARITHMETICA. LXXIII.4 (1995)
- Heng Huat Chan, ACTA ARITHMETICA. LXXIII.4 (1995)
http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf
Ramanujan's class invariants and cubic continued fraction
Berndt, 1995
- http://www.ams.org/mathscinet
- [1]http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field