"Ramanujan's Cubic Continued fractions"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
48번째 줄: 48번째 줄:
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">articles</h5>
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">articles</h5>
  
 +
*  A new proof of two identities involving Ramanujan’s cubic continued fraction<br>
 +
**  Chan, H.-C, 2010<br>
 
* [http://arxiv.org/abs/math/0502323 On Ramanujan's cubic continued fraction and explicit evaluations of theta-functions]<br>
 
* [http://arxiv.org/abs/math/0502323 On Ramanujan's cubic continued fraction and explicit evaluations of theta-functions]<br>
** [http://arxiv.org/abs/math/0502323 ]C. Adiga, T. Kim, M.S.Mahadeva Naika, H. S. Madhusudhan, 2005<br>
+
** C. Adiga, T. Kim, M.S.Mahadeva Naika, H. S. Madhusudhan, 2005<br>
 
+
Ramanujan's cubic continued fraction and Ramanujan type congruences for a certain partition function.<br>
RAMANUJAN’S CUBIC CONTINUED FRACTION AND RAMANUJAN TYPE CONGRUENCES FOR A CERTAIN PARTITION FUNCTION<br>
+
**  Chan, H.-C,  Int. J. Number Theory<br>
**  HEI-CHI CHAN<br>
 
*  A NEW PROOF FOR TWO IDENTITIES INVOLVING RAMANUJAN’S CUBIC CONTINUED FRACTION<br>
 
**  HEI-CHI CHAN<br>
 
 
* [http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7343.pdf On Ramanujan’s cubic continued fraction]<br>
 
* [http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7343.pdf On Ramanujan’s cubic continued fraction]<br>
 
**  Heng Huat Chan, ACTA ARITHMETICA. LXXIII.4 (1995)<br>
 
**  Heng Huat Chan, ACTA ARITHMETICA. LXXIII.4 (1995)<br>

2010년 7월 22일 (목) 04:36 판

introduction

\({1 \over 1+} {q+q^2 \over 1+} {q^{2}+a^{4} \over 1+} {q^3+q^6 \over 1+}{\cdots} \)

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf

 

 

Ramanujan's class invariants and cubic continued fraction

Berndt, 1995

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links