"Ramanujan's Cubic Continued fractions"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
| 2번째 줄: | 2번째 줄: | ||
<math>{1 \over 1+} {q+q^2 \over 1+} {q^{2}+a^{4} \over 1+} {q^3+q^6 \over 1+}{\cdots} =\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}}</math> | <math>{1 \over 1+} {q+q^2 \over 1+} {q^{2}+a^{4} \over 1+} {q^3+q^6 \over 1+}{\cdots} =\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}}</math> | ||
| − | |||
| − | |||
<math>\frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots}=q^{1/3}\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}} </math> | <math>\frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots}=q^{1/3}\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}} </math> | ||
| − | <math>\frac{\Gamma(\frac{1}{6})\Gamma(\frac{5}{6})}{\Gamma(\frac{3}{6})^{3}}=2</math> | + | <math>\frac{\Gamma(\frac{1}{6})\Gamma(\frac{3}{6})\Gamma(\frac{5}{6})}{\Gamma(\frac{3}{6})^{3}}=2</math> |
| 64번째 줄: | 62번째 줄: | ||
* [http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7343.pdf On Ramanujan’s cubic continued fraction]<br> | * [http://matwbn.icm.edu.pl/ksiazki/aa/aa73/aa7343.pdf On Ramanujan’s cubic continued fraction]<br> | ||
** Heng Huat Chan, ACTA ARITHMETICA. LXXIII.4 (1995)<br> | ** Heng Huat Chan, ACTA ARITHMETICA. LXXIII.4 (1995)<br> | ||
| − | * | + | * [http://www.google.com/url?sa=t&ct=res&cd=1&url=http%3A%2F%2Fjlms.oxfordjournals.org%2Fcgi%2Freprint%2Fs1-4%2F3%2F231&ei=JY1hSLWRLpSY8gSI7JSiBQ&usg=AFQjCNElhd9FwCl3m3Qcb3hW7j87K1P5FQ&sig2=4OhMIB56amm8h4EOGNSk6g Theorems Stated by Ramanujan (IX): Two Continued Fractions.]<br> |
| − | + | ** Watson, G. N. 1929<br> | |
| − | |||
| − | |||
| − | |||
| 86번째 줄: | 81번째 줄: | ||
| − | + | http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf | |
| + | |||
| + | [http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf ] | ||
| + | |||
| + | |||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">question and answers(Math Overflow)</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">question and answers(Math Overflow)</h5> | ||
2010년 7월 30일 (금) 12:42 판
introduction
\({1 \over 1+} {q+q^2 \over 1+} {q^{2}+a^{4} \over 1+} {q^3+q^6 \over 1+}{\cdots} =\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}}\)
\(\frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots}=q^{1/3}\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}} \)
\(\frac{\Gamma(\frac{1}{6})\Gamma(\frac{3}{6})\Gamma(\frac{5}{6})}{\Gamma(\frac{3}{6})^{3}}=2\)
history
\(G(q)= \frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots} \quad |q|<1\)
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
articles
- A new proof of two identities involving Ramanujan’s cubic continued fraction
- Chan, H.-C, 2010
- Chan, H.-C, 2010
- On Ramanujan's cubic continued fraction and explicit evaluations of theta-functions
- C. Adiga, T. Kim, M.S.Mahadeva Naika, H. S. Madhusudhan, 2005
- C. Adiga, T. Kim, M.S.Mahadeva Naika, H. S. Madhusudhan, 2005
- Some evaluations of Ramanujan’s cubic continued fraction(http://www.zentralblatt-math.org/zmath/search/?an=1148.11303)
- Bhargava, S., Vasuki, K.R., Sreeramamurthy, T.G., Indian J. Pure Appl. Math. 35, 1003–1025 (2004)
- Bhargava, S., Vasuki, K.R., Sreeramamurthy, T.G., Indian J. Pure Appl. Math. 35, 1003–1025 (2004)
- Ramanujan's cubic continued fraction and Ramanujan type congruences for a certain partition function.
- Chan, H.-C, Int. J. Number Theory
- Chan, H.-C, Int. J. Number Theory
- On Ramanujan’s cubic continued fraction
- Heng Huat Chan, ACTA ARITHMETICA. LXXIII.4 (1995)
- Heng Huat Chan, ACTA ARITHMETICA. LXXIII.4 (1995)
- Theorems Stated by Ramanujan (IX): Two Continued Fractions.
- Watson, G. N. 1929
- Watson, G. N. 1929
Ramanujan's class invariants and cubic continued fraction
Berndt, 1995
- http://www.ams.org/mathscinet
- [1]http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field