"Ramanujan's Cubic Continued fractions"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
121번째 줄: 121번째 줄:
 
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* http://functions.wolfram.com/
 
* http://functions.wolfram.com/
*
+
*[[분류:개인노트]]

2012년 10월 28일 (일) 16:58 판

introduction== \({1 \over 1+} {q+q^2 \over 1+} {q^{2}+a^{4} \over 1+} {q^3+q^6 \over 1+}{\cdots} =\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}}\) \(\frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots}=q^{1/3}\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}} \) \(\frac{\Gamma(\frac{1}{6})\Gamma(\frac{3}{6})\Gamma(\frac{5}{6})}{\Gamma(\frac{3}{6})^{3}}=2\)    
history== \(G(q)= \frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots} \quad |q|<1\)  
related items==    
encyclopedia==    
books==   4909919    
articles==   Ramanujan's class invariants and cubic continued fraction Berndt, 1995
  http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf [2]
question and answers(Math Overflow)==    
blogs==    
experts on the field==    
links==