"Ramanujan's Cubic Continued fractions"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로) |
||
| 1번째 줄: | 1번째 줄: | ||
| − | + | ==introduction== | |
<math>{1 \over 1+} {q+q^2 \over 1+} {q^{2}+a^{4} \over 1+} {q^3+q^6 \over 1+}{\cdots} =\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}}</math> | <math>{1 \over 1+} {q+q^2 \over 1+} {q^{2}+a^{4} \over 1+} {q^3+q^6 \over 1+}{\cdots} =\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}}</math> | ||
| 11번째 줄: | 11번째 줄: | ||
| − | + | ==history== | |
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
| 19번째 줄: | 19번째 줄: | ||
| − | + | ==related items== | |
| 25번째 줄: | 25번째 줄: | ||
| − | + | ==encyclopedia== | |
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
| 35번째 줄: | 35번째 줄: | ||
| − | + | ==books== | |
| 50번째 줄: | 50번째 줄: | ||
| − | + | ==articles== | |
* A new proof of two identities involving Ramanujan’s cubic continued fraction<br> | * A new proof of two identities involving Ramanujan’s cubic continued fraction<br> | ||
| 87번째 줄: | 87번째 줄: | ||
| − | + | ==question and answers(Math Overflow)== | |
* http://mathoverflow.net/search?q= | * http://mathoverflow.net/search?q= | ||
| 96번째 줄: | 96번째 줄: | ||
| − | + | ==blogs== | |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> | ||
| 107번째 줄: | 107번째 줄: | ||
| − | + | ==experts on the field== | |
* http://arxiv.org/ | * http://arxiv.org/ | ||
| 115번째 줄: | 115번째 줄: | ||
| − | + | ==links== | |
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
2012년 10월 28일 (일) 17:45 판
introduction
\({1 \over 1+} {q+q^2 \over 1+} {q^{2}+a^{4} \over 1+} {q^3+q^6 \over 1+}{\cdots} =\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}}\)
\(\frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots}=q^{1/3}\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}} \)
\(\frac{\Gamma(\frac{1}{6})\Gamma(\frac{3}{6})\Gamma(\frac{5}{6})}{\Gamma(\frac{3}{6})^{3}}=2\)
history
\(G(q)= \frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots} \quad |q|<1\)
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
articles
- A new proof of two identities involving Ramanujan’s cubic continued fraction
- Chan, H.-C, 2010
- Chan, H.-C, 2010
- On Ramanujan's cubic continued fraction and explicit evaluations of theta-functions
- C. Adiga, T. Kim, M.S.Mahadeva Naika, H. S. Madhusudhan, 2005
- C. Adiga, T. Kim, M.S.Mahadeva Naika, H. S. Madhusudhan, 2005
- Some evaluations of Ramanujan’s cubic continued fraction(http://www.zentralblatt-math.org/zmath/search/?an=1148.11303)
- Bhargava, S., Vasuki, K.R., Sreeramamurthy, T.G., Indian J. Pure Appl. Math. 35, 1003–1025 (2004)
- Bhargava, S., Vasuki, K.R., Sreeramamurthy, T.G., Indian J. Pure Appl. Math. 35, 1003–1025 (2004)
- Ramanujan's cubic continued fraction and Ramanujan type congruences for a certain partition function.
- Chan, H.-C, Int. J. Number Theory
- Chan, H.-C, Int. J. Number Theory
- On Ramanujan’s cubic continued fraction
- Heng Huat Chan, ACTA ARITHMETICA. LXXIII.4 (1995)
- Heng Huat Chan, ACTA ARITHMETICA. LXXIII.4 (1995)
- Theorems Stated by Ramanujan (IX): Two Continued Fractions.
- Watson, G. N. 1929
- Watson, G. N. 1929
Ramanujan's class invariants and cubic continued fraction
Berndt, 1995
- http://www.ams.org/mathscinet
- [1]http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field