"Bosonization"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
71번째 줄: 71번째 줄:
 
==articles==
 
==articles==
 
* Langmann, Edwin, and Per Moosavi. ‘Construction by Bosonization of a Fermion-Phonon Model’. arXiv:1503.01835 [math-Ph], 5 March 2015. http://arxiv.org/abs/1503.01835.
 
* Langmann, Edwin, and Per Moosavi. ‘Construction by Bosonization of a Fermion-Phonon Model’. arXiv:1503.01835 [math-Ph], 5 March 2015. http://arxiv.org/abs/1503.01835.
 +
* Dotsenko, Vl. S. “The Free Field Representation of the su(2) Conformal Field Theory.” Nuclear Physics B 338, no. 3 (July 16, 1990): 747–58. doi:10.1016/0550-3213(90)90649-X.
  
  

2016년 7월 29일 (금) 00:26 판

introduction

  • Bosonization is a nonperturbative method
  • Bosonization is a method for translating a fermionic theory into a bosonic theory, and eventually retranslating part of the latter into a new fermionic language (cf. the Luther-Emery model or the use of Majorana fermions).
  • This translation process is exact in the continuum limit, but does not warrant an exact solution of the model, except in a few exceptional cases (e.g. the Tomonaga-Luttinger model).
  • For the rest, one must rely on renormalization-group analyses, which generally complement bosonization.

 

Tomonaga-Luttinger model

  • The Tomonaga-Luttinger (TL) model, a continuum theory of interacting fermions, can be translated into a theory of noninteracting bosons and solved exactly

 

 

Thirring model

 

 

CFT and bosonization

  • The intimate relation between CFT and the conventional bosonization had became manifest when Dotsenko and Fateev represented the CFT correlation functions in terms of correlators of bosonic exponents (1984)

 

 

history

 

 

related items

 

 

encyclopedia

 

books


expositions

 


articles

  • Langmann, Edwin, and Per Moosavi. ‘Construction by Bosonization of a Fermion-Phonon Model’. arXiv:1503.01835 [math-Ph], 5 March 2015. http://arxiv.org/abs/1503.01835.
  • Dotsenko, Vl. S. “The Free Field Representation of the su(2) Conformal Field Theory.” Nuclear Physics B 338, no. 3 (July 16, 1990): 747–58. doi:10.1016/0550-3213(90)90649-X.