"Talk on BGG resolution"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
108번째 줄: 108번째 줄:
 
* Remark in 6.2
 
* Remark in 6.2
 
* study $D_k^\lambda : = (D_k^0\otimes L(\lambda))^{\chi_{\lambda}}$
 
* study $D_k^\lambda : = (D_k^0\otimes L(\lambda))^{\chi_{\lambda}}$
* first, find all Verma modules involved in a standard filtration of $D_k^0\otimes L(\lambda)$ : $w\cdot 0 + \mu$
+
* first, find all Verma modules involved in a standard filtration of $D_k^0\otimes L(\lambda)$ : those associated to $w\cdot 0 + \mu$
* then determine which Verma modules are linked to $w\cdot \lambda$ : $\mu = w\lambda$
+
* then determine which Verma modules are linked to $w\cdot \lambda$ : Ans. $\mu = w\lambda$
  
 
;thm (3.6)
 
;thm (3.6)

2016년 4월 27일 (수) 06:31 판

overview

  • principal block : filtering through central characters
    • is a block a $U(\mathfrak{g})$-submodule? yes
    • how to check that it preserves the exactness : any homomorphism between modules belonging to different blocks will be zero
  • combinatorial results
    • longest elements satisfies $w_0\cdot 0 = -2\rho$ (related to diagram automorphism)
    • consider the set of sum of k distinct roots. Which elements are linked to $0$?
    • Bruhat ordering
  • Bruhat ordering and strong linkage relation
    • let $\lambda \in \Lambda^+$ (which is regular for the dot-action of $W$)
    • $w'\cdot \lambda< w \cdot \lambda $ translates into $w < w'$ in the Bruhat ordering
  • strong linkage relation and extension of Verma modules

characters

  • let $\lambda\in \mathfrak{h}^*$

$$ \operatorname{ch} M({\lambda})=\frac{e^{\lambda}}{\prod_{\alpha>0}(1-e^{-\alpha})} $$

  • let $\lambda\in \Lambda^+$
thm (Weyl character formula)

\[ \operatorname{ch}L({\lambda})=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w\cdot \lambda}}{\prod_{\alpha>0}(1-e^{-\alpha})} \]

  • thus we have

$$ \operatorname{ch}L(\lambda)=\sum_{w \in W}(-1)^{\ell(w)}\operatorname{ch} M(w\cdot \lambda) \label{WCF} $$

prop

If $0\to M' \to M \to M \to 0$ is a short exact sequence in $\mathcal{O}$, we have $$ \operatorname{ch}M=\operatorname{ch}M'+\operatorname{ch}M'' $$ or $$ \operatorname{ch}M'-\operatorname{ch}M+\operatorname{ch}M''=0 $$

  • if we have a long exact sequence, we still get a similar alternating sum = 0
  • goal : realize the alternating sum \ref{WCF} as an Euler characteristic of a suitable resolution of $L(\lambda)$
  • The BGG resolution resolves a finite-dimensional simple $\mathfrak{g}$-module $L(\lambda)$ by direct sums of Verma modules indexed by weights "of the same length" in the orbit $W\cdot \lambda$
thm (Bernstein-Gelfand-Gelfand Resolution)

Fix $\lambda\in \Lambda^{+}$. There is an exact sequence of Verma modules $$ 0 \to M({w_0\cdot \lambda})\to \cdots \to \bigoplus_{w\in W, \ell(w)=k}M({w\cdot \lambda})\to \cdots M({\lambda})\to L({\lambda})\to 0 $$ where $\ell(w)$ is the length of the Weyl group element $w$, $w_0$ is the Weyl group element of maximal length. Here $\rho$ is half the sum of the positive roots.

example of BGG resolution

$\mathfrak{sl}_2$

  • \(L({\lambda})\) : irreducible highest weight module
  • \(M({\lambda})\) : Verma modules
    • note that the Verma modules are free modules of rank 1 over \(\mathbb{C}[F]\) where $F$ is the annihilation operator of $\mathfrak{sl}_2$
  • \(\lambda ,-2+\lambda ,\cdots, -\lambda, -\lambda-2,\cdots\)
  • \(L({\lambda})=M({\lambda})/M({-\lambda-2})\)
  • BGG resolution

\[0\to M({-\lambda-2})\to M({\lambda})\to L({\lambda})\to 0\]

  • number of modules = 2 (=order of Weyl group in general)
  • character of $L({\lambda})$ = alternating sum of characters of Verma modules

\[\operatorname{ch}{L({\lambda})}=\operatorname{ch}{M({\lambda})}-\operatorname{ch}{M({-\lambda-2})}=\frac{q^{\lambda}}{1-q^{-2}}-\frac{q^{-\lambda-2}}{1-q^{-2}}\]

\[\operatorname{ch} L({\lambda})=\frac{\sum_{w\in W} (-1)^{\ell(w)}e^{w(\lambda+\rho)}}{e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}=\frac{q^{\lambda+1}-q^{-\lambda-1}}{q^{1}(1-q^{-2})}\] where \(\rho=1,\alpha=2\) and \(w(\lambda+\rho)=-\lambda-\rho\)

$\mathfrak{sl}_3$

weak BGG resolution

def
  • We say that $M \in O$ has a standard filtration (also called a Verma flag) if there is a sequence of submodules

$$0 = M_0 \subset M_1 \subset M_2 \subset \cdots \subset M_n = M$$ for which each $M^i := M_i/M_{i−1}\, (1 \le i \le n)$ is isomorphic to a Verma module.

thm (Weak BGG resolution)

There is an exact sequence $$ 0 \to M({w_0\cdot \lambda}) = D_m^{\lambda} \to D_{m-1}^{\lambda} \to \cdots \to D_1^{\lambda} \to D_0^{\lambda}=M(\lambda) \to L(\lambda) \to 0 $$ where $D_{k}^{\lambda}$ has a standard filtration involving exactly once each of the Verma modules $M(w\cdot \lambda)$ with $\ell(w)=k$


strategy of the proof

  • construct a relative version of standard resoultion $D_k:=U(\mathfrak{g})\otimes_{U(\mathfrak{b})}\Lambda^{k}(\mathfrak{g}/\mathfrak{b})$ for $\lambda=0$
  • construct a weak BGG resolution $D_k^0:=D_k^{\chi_{0}}$ for $\lambda=0$ by cutting down to the principal block component of each term
  • construct a weak BGG resolution $D_k^\lambda : = (D_k^0\otimes L(\lambda))^{\chi_{\lambda}}$ for $\lambda\in \Lambda^+$ by applying the translation functor
  • show that it is actually a BGG resolution by computing $\operatorname{Ext}$ between Verma modules

standard resolution of trivial module

  • free $U(\mathfrak{g})$-modules $U(\mathfrak{g})\otimes_{\mathbb{C}}\Lambda^{k}(\mathfrak{g})$
  • standard resolution of trivial module

$$\cdots \to U(\mathfrak{g})\otimes_{\mathbb{C}}\Lambda^{k}(\mathfrak{g})\to U(\mathfrak{g})\otimes_{\mathbb{C}}\Lambda^{k-1}(\mathfrak{g})\to \cdots \to U(\mathfrak{g})\otimes_{\mathbb{C}}\Lambda^{0}(\mathfrak{g})\to L(0)$$

  • the sequence of modules $D_k:=U(\mathfrak{g})\otimes_{U(\mathfrak{b})}\Lambda^{k}(\mathfrak{g}/\mathfrak{b})$ is a relative version of the standard resolution of the trivial module in Lie algebra cohomology
  • we can describe $D_0$ and $D_m$ explicitly
  • define $\partial_k : D_k \to D_{k-1}$ as

$$ \partial_k ( u\otimes \xi_1 \wedge \cdots \xi _k): = \sum_{i=1}^k(-1)^{i+1}(uz_i\otimes \xi_1\wedge \cdots \hat{\xi_i}\wedge \cdots \xi_k)+\sum_{1\le i<j \le k} (-1)^{i+j}(u \otimes \overline{[z_iz_j]} \xi_1\wedge \cdots \hat{\xi_i}\wedge \cdots \hat{\xi_j} \cdots \xi_k) $$

  • show that it is actually a complex and exact

weights of exterior powers

  • what are the weights of $\wedge^k (\mathfrak{g}/\mathfrak{b})$ as $\mathfrak{b}$-module?
  • let $\beta$ be a sum of $k$-distinct negative root. Can we find $w\in W$ such that $w\cdot 0=\beta$?
  • note that $|W\cdot 0|=|W|$
  • yes, if and only if $\beta$ is a sum of elements in $w \Phi^+ \cap \Phi^-$
  • now we have found the principal block $D_k^0$ and Verma modules in its standard filtration

tensor with simple module

  • Remark in 6.2
  • study $D_k^\lambda : = (D_k^0\otimes L(\lambda))^{\chi_{\lambda}}$
  • first, find all Verma modules involved in a standard filtration of $D_k^0\otimes L(\lambda)$ : those associated to $w\cdot 0 + \mu$
  • then determine which Verma modules are linked to $w\cdot \lambda$ : Ans. $\mu = w\lambda$
thm (3.6)

Let $M$ be a finite dimensional $U(\mathfrak{g})$-module. For any $\lambda\in \mathfrak{h}^{*}$, the tensor produce $T:=M(\lambda)\otimes M$ has a finite filtration with quotients isomorphic to Verma modules of the form $M(\lambda+\mu)$. Here $\mu$ ranges over the weights of $M$, each occurring $\dim M_{\mu}$ times in the filtration.

extensions of Verma modules

  • $\mu, \lambda\in \mathfrak{h}^{*}$
  • $\mu \uparrow \lambda$ if $\mu = \lambda$ or there is a root $\alpha$ such that $\mu=s_{\alpha}\cdot \lambda < \lambda $
  • we say $\mu$ is strongly linked to $\lambda$ if $\mu = \lambda$ or there exist root $\alpha_1,\cdots, \alpha_r\in \Phi^+$ such that $\mu=(s_{\alpha_1}\cdots s_{\alpha_r})\cdot \lambda \uparrow (s_{\alpha_2}\cdots s_{\alpha_r})\cdot \lambda \uparrow ( s_{\alpha_r})\cdot \lambda \uparrow \cdots \uparrow \lambda $
thm

Let $\lambda\in \mathfrak{h}^{*}$.

(a) If $\operatorname{Ext}_{\mathcal{O}}(M(\mu),M(\lambda))\neq 0$ for $\mu\in \mathfrak{h}^{*}$, then $\mu \uparrow \lambda$ but $\mu \neq \lambda$

(b) Let $\lambda\in \Lambda^{+}$ and $w,w'\in W$. If $\operatorname{Ext}_{\mathcal{O}}(M(w'\cdot\lambda),M(w\cdot\lambda))\neq 0$, then $w<w'$ in the Bruhat ordering. In particular, $\ell(w)<\ell(w')$.

prop (3.7)

Let $M\in \mathcal{O}$ have a standard filtration. If $\lambda$ is maximal among the weights of $M$, then $M$ has a submodule isomorphic to $M(\lambda)$ and $M/M(\lambda)$ has a standard filtration.