"Light cone coordinates and gauge"의 두 판 사이의 차이
(피타고라스님이 이 페이지의 위치를 <a href="/pages/3709651">special and general relativity</a>페이지로 이동하였습니다.) |
|||
2번째 줄: | 2번째 줄: | ||
* light cone gague<br> | * light cone gague<br> | ||
+ | |||
+ | |||
+ | |||
+ | <h5>1차원에서의 일반해</h5> | ||
+ | |||
+ | * <math>\frac{\partial^2 Y}{\partial t^2}=v^2\frac{\partial^2 Y}{\partial x^2}</math> 또는 <math>\mu\frac{\partial^2 Y}{\partial t^2}=T\frac{\partial^2 Y}{\partial x^2}</math> (<math>v=\sqrt{\frac{T}{\mu}}</math>) | ||
+ | * 일반해는 <math>Y=f(x+vt)+g(x-vt)</math>로 주어진다<br> | ||
+ | * f는 왼쪽, g는 오른쪽으로 이동하는 파동이며, Y는 그 중첩으로 주어진다<br> | ||
+ | |||
+ | |||
+ | |||
+ | (증명) | ||
+ | |||
+ | <math>u=x+at</math>, <math>v=x-at</math>라 두자. | ||
+ | |||
+ | 그러면 <math>Y=f(u)+g(v)</math>로 쓸 수 있다. | ||
+ | |||
+ | <math>\frac{\partial Y}{\partial t}=\frac{\partial Y}{\partial u}\frac{\partial u}{\partial t} +\frac{\partial Y}{\partial v}\frac{\partial v}{\partial t}=f'(u)a+g'(v)(-a)=af'(u)-ag'(v)</math> | ||
+ | |||
+ | <math>W(u,v)=\frac{\partial Y}{\partial t}=af'(u)-ag'(v)</math>. | ||
+ | |||
+ | <math>\frac{\partial^2 Y}{\partial t^2}=\frac{\partial W}{\partial t}=\frac{\partial W}{\partial u}\frac{\partial u}{\partial t} +\frac{\partial W}{\partial v}\frac{\partial v}{\partial t}=af''(u)a-ag''(v)(-a)=a^2(f''(u)+g''(v))</math> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <math>\frac{\partial Y}{\partial x}=\frac{\partial Y}{\partial u}\frac{\partial u}{\partial x} +\frac{\partial Y}{\partial v}\frac{\partial v}{\partial x}=f'(u)+g'(v)</math> | ||
+ | |||
+ | <math>Z(u,v)=\frac{\partial Y}{\partial x}=f'(u)+g'(v)</math> | ||
+ | |||
+ | <math>\frac{\partial^2 Y}{\partial x^2}=\frac{\partial Z}{\partial x}=\frac{\partial Z}{\partial u}\frac{\partial u}{\partial x} +\frac{\partial Z}{\partial v}\frac{\partial v}{\partial x}=f''(u)+g''(v)</math> | ||
+ | |||
+ | |||
+ | |||
+ | 따라서 | ||
+ | |||
+ | <math>\frac{\partial^2 Y}{\partial t^2}=a^2\frac{\partial^2 Y}{\partial x^2}=a^2(f''(u)+g''(v))</math>■ | ||
21번째 줄: | 59번째 줄: | ||
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5> | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5> | ||
+ | * http://en.wikipedia.org/wiki/Light_cone_gauge | ||
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
* http://www.scholarpedia.org/ | * http://www.scholarpedia.org/ |
2011년 10월 5일 (수) 10:08 판
introduction
- light cone gague
1차원에서의 일반해
- \(\frac{\partial^2 Y}{\partial t^2}=v^2\frac{\partial^2 Y}{\partial x^2}\) 또는 \(\mu\frac{\partial^2 Y}{\partial t^2}=T\frac{\partial^2 Y}{\partial x^2}\) (\(v=\sqrt{\frac{T}{\mu}}\))
- 일반해는 \(Y=f(x+vt)+g(x-vt)\)로 주어진다
- f는 왼쪽, g는 오른쪽으로 이동하는 파동이며, Y는 그 중첩으로 주어진다
(증명)
\(u=x+at\), \(v=x-at\)라 두자.
그러면 \(Y=f(u)+g(v)\)로 쓸 수 있다.
\(\frac{\partial Y}{\partial t}=\frac{\partial Y}{\partial u}\frac{\partial u}{\partial t} +\frac{\partial Y}{\partial v}\frac{\partial v}{\partial t}=f'(u)a+g'(v)(-a)=af'(u)-ag'(v)\)
\(W(u,v)=\frac{\partial Y}{\partial t}=af'(u)-ag'(v)\).
\(\frac{\partial^2 Y}{\partial t^2}=\frac{\partial W}{\partial t}=\frac{\partial W}{\partial u}\frac{\partial u}{\partial t} +\frac{\partial W}{\partial v}\frac{\partial v}{\partial t}=af''(u)a-ag''(v)(-a)=a^2(f''(u)+g''(v))\)
\(\frac{\partial Y}{\partial x}=\frac{\partial Y}{\partial u}\frac{\partial u}{\partial x} +\frac{\partial Y}{\partial v}\frac{\partial v}{\partial x}=f'(u)+g'(v)\)
\(Z(u,v)=\frac{\partial Y}{\partial x}=f'(u)+g'(v)\)
\(\frac{\partial^2 Y}{\partial x^2}=\frac{\partial Z}{\partial x}=\frac{\partial Z}{\partial u}\frac{\partial u}{\partial x} +\frac{\partial Z}{\partial v}\frac{\partial v}{\partial x}=f''(u)+g''(v)\)
따라서
\(\frac{\partial^2 Y}{\partial t^2}=a^2\frac{\partial^2 Y}{\partial x^2}=a^2(f''(u)+g''(v))\)■
history
encyclopedia
- http://en.wikipedia.org/wiki/Light_cone_gauge
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
articles
-
- http://www.ams.org/mathscinet
- [1]http://www.zentralblatt-math.org/zmath/en/
- [2]http://arxiv.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
experts on the field