"각운동량의 양자 이론"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
8번째 줄: | 8번째 줄: | ||
<h5>개요</h5> | <h5>개요</h5> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>고전역학의 각운동량</h5> | ||
+ | |||
+ | * <math>\mathbf{L}=\mathbf{r}\times \mathbf{p}</math> | ||
+ | |||
+ | * A classical electron moving around a nucleus in a circular orbit<br> | ||
+ | ** orbital angular momentum, <math>L=m_evr</math> | ||
+ | ** magnetic dipole moment, <math>\mu= -evr/2</math> | ||
+ | ** where e, m_e, v, and r are the electron´s charge, mass, velocity, and radius, respectively. | ||
+ | * A classical electron of homogeneous mass and charge density rotating about a symmetry axis<br> | ||
+ | ** angular momentum, <math>L=(3/5)m_eR^2\Omega</math> | ||
+ | ** magnetic dipole moment, <math>\mu= -(3/10)eR^2\Omega</math>, where R and \Omega are the electron´s classical radius and rotating frequency | ||
+ | * gyromagnetic ratio <math>\gamma = \mu/L=-e/2m_e</math><br>[http://bomber0.springnote.com/pages/7141159/attachments/4562863 I15-62-g20.jpg]<br> | ||
+ | * pictures from [http://universe-review.ca/R15-12-QFT.htm#g2 Gyromagnetic Ratio and Anomalous Magnetic Moment] | ||
+ | |||
+ | |||
2012년 6월 5일 (화) 05:20 판
이 항목의 수학노트 원문주소
개요
고전역학의 각운동량
- \(\mathbf{L}=\mathbf{r}\times \mathbf{p}\)
- A classical electron moving around a nucleus in a circular orbit
- orbital angular momentum, \(L=m_evr\)
- magnetic dipole moment, \(\mu= -evr/2\)
- where e, m_e, v, and r are the electron´s charge, mass, velocity, and radius, respectively.
- A classical electron of homogeneous mass and charge density rotating about a symmetry axis
- angular momentum, \(L=(3/5)m_eR^2\Omega\)
- magnetic dipole moment, \(\mu= -(3/10)eR^2\Omega\), where R and \Omega are the electron´s classical radius and rotating frequency
- gyromagnetic ratio \(\gamma = \mu/L=-e/2m_e\)
I15-62-g20.jpg - pictures from Gyromagnetic Ratio and Anomalous Magnetic Moment
3j symbols
- relation between 3j-symbol and Clebsch-Gordan coefficient
- Racah formula for 3j-symbol
- explicit formula
- orthogonality relation
- Wigner-Eckart theorem
- 테이블
- 강의
역사
메모
- Semiclassical analysis ofWigner 3j-symbol http://bohr.physics.berkeley.edu/hal/pubs/AqHaLiYu2007/AqHaLiYuJPA3jSymbol.pdf
- example
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
매스매티카 파일 및 계산 리소스
- http://demonstrations.wolfram.com/AdditionOfAngularMomentaInQuantumMechanics/
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- Abramowitz and Stegun Handbook of mathematical functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
- 매스매티카 파일 목록
사전 형태의 자료
- http://mathworld.wolfram.com/Clebsch-GordanCoefficient.html
- http://mathworld.wolfram.com/RacahV-Coefficient.html
- http://mathworld.wolfram.com/Wigner3j-Symbol.html
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
- Paul E.S. Wormer, ANGULAR MOMENTUM THEORY
관련논문