"Hecke L-functions"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
21번째 줄: | 21번째 줄: | ||
==expositions== | ==expositions== | ||
* James-Michael Leahy, [http://www.math.mcgill.ca/darmon/theses/leahy/thesis.pdf An introduction to Tate's Thesis] | * James-Michael Leahy, [http://www.math.mcgill.ca/darmon/theses/leahy/thesis.pdf An introduction to Tate's Thesis] | ||
+ | * Herz, Carl, Stephen William Drury, and Maruti Ram Murty. 1997. Harmonic Analysis and Number Theory: Papers in Honour of Carl S. Herz : Proceedings of a Conference on Harmonic Analysis and Number Theory, April 15-19, 1996, McGill University, Montréal, Canada. American Mathematical Soc. |
2014년 7월 6일 (일) 05:49 판
introduction
In the early 20th century, Erich Hecke attempted to find a further generalization of the Dirichlet L-series and the Dedekind zeta function. In 1920, he introduced the notion of a Grossencharakter, an ideal class character of a number field, and established the analytic continuation and functional equation of its associated L-series, the Hecke L-series. In 1950, John Tate, following the suggestion of his advisor, Emil Artin, recast Hecke's work. Tate provided a more elegant proof of the functional equation of the Hecke L-series by using Fourier analysis on the adeles and employing a reformulation of the Grossencharakter in terms of a character on the ideles. Tate's work now is generally understood as the GL(1) case of automorphic forms
expositions
- James-Michael Leahy, An introduction to Tate's Thesis
- Herz, Carl, Stephen William Drury, and Maruti Ram Murty. 1997. Harmonic Analysis and Number Theory: Papers in Honour of Carl S. Herz : Proceedings of a Conference on Harmonic Analysis and Number Theory, April 15-19, 1996, McGill University, Montréal, Canada. American Mathematical Soc.