"Hecke L-functions"의 두 판 사이의 차이
imported>Pythagoras0 |
imported>Pythagoras0 |
||
16번째 줄: | 16번째 줄: | ||
</blockquote> | </blockquote> | ||
+ | |||
+ | ==Riemann zeta function== | ||
+ | * {{수학노트|url=리만제타함수}} | ||
+ | ===해석적확장 (analytic continuation)=== | ||
+ | |||
+ | * [[자코비 세타함수]]를 이용하여, 리만제타함수를 복소평면 전체로 확장할 수 있음.:<math>\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau}</math><br> | ||
+ | |||
+ | * [[감마함수]]:<math>\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}</math><br> 를 이용하면, :<math>\int_0^\infty e^{-\pi n^2t} t^{\frac{s}{2}} \frac{dt}{t} = {\pi}^{-\frac{s}{2}}\Gamma(\frac{s}{2})\frac{1}{n^s}</math><br> | ||
+ | * 형식적으로는 다음과 같은 적분에 의해, 리만제타함수를 얻을 수 있음. | ||
+ | :<math>\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)= \int_0^\infty (\frac{\theta(it)-1}{2})t^{\frac{s}{2}} \frac{dt}{t}</math> | ||
+ | |||
+ | * 그러나 위의 적분은 모든 s에 대하여 수렴하지 않음. 따라서 다음과 같이 수정하여, 적분이 모든 s에 대하여 정의되도록 함. | ||
+ | :<math>\xi(s)=\pi^{-s/2}\Gamma(s/2)\zeta(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}</math> | ||
+ | |||
+ | 여기서는 [[자코비 세타함수]]의 성질 | ||
+ | :<math>\theta(iy)=\frac{1}{\sqrt{y}}\theta(\frac{i}{y})</math> | ||
+ | 이 사용됨. | ||
+ | |||
+ | * [http://people.reed.edu/%7Ejerry/311/zeta.pdf http://people.reed.edu/~jerry/311/zeta.pdf] analytic continuation | ||
+ | |||
+ | |||
+ | |||
+ | ===함수방정식=== | ||
+ | |||
+ | * 리만제타함수는 <math>s=\frac{1}{2}</math> 에 대하여 대칭성을 가지고, 그에 따른 함수방정식을 만족시킴.:<math>\xi(s) = \xi(1 - s)</math> 즉,:<math>\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)</math> | ||
+ | |||
+ | (증명) | ||
+ | |||
+ | [[자코비 세타함수]]의 모듈라 성질을 사용하면, | ||
+ | :<math>\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t}= \int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}</math> | ||
+ | |||
+ | 이므로, <math>\xi(s)</math> 의 정의를 이용하면, | ||
+ | :<math>\xi(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}+\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}</math> | ||
+ | |||
+ | 를 얻는다. | ||
+ | |||
+ | 이 식에서 <math>s \leftrightarrow 1-s</math> 는 우변을 변화시키지 않음므로 함수방정식 <math>\xi(s) = \xi(1 - s)</math>을 얻는다. | ||
+ | |||
+ | (증명끝) | ||
==Dirichlet L-functions== | ==Dirichlet L-functions== |
2014년 7월 6일 (일) 16:39 판
introduction
- http://math.stackexchange.com/questions/409200/functional-equation-for-hecke-l-series
- Tate's approach to analytic continuation of classical $\zeta$-functions and Dirichlet $L$-functions
- from [Leahy2010]
In the early 20th century, Erich Hecke attempted to find a further generalization of the Dirichlet L-series and the Dedekind zeta function. In 1920, he introduced the notion of a Grossencharakter, an ideal class character of a number field, and established the analytic continuation and functional equation of its associated L-series, the Hecke L-series. In 1950, John Tate, following the suggestion of his advisor, Emil Artin, recast Hecke's work. Tate provided a more elegant proof of the functional equation of the Hecke L-series by using Fourier analysis on the adeles and employing a reformulation of the Grossencharakter in terms of a character on the ideles. Tate's work now is generally understood as the GL(1) case of automorphic forms
Riemann zeta function
해석적확장 (analytic continuation)
- 자코비 세타함수를 이용하여, 리만제타함수를 복소평면 전체로 확장할 수 있음.\[\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau}\]
- 감마함수\[\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}\]
를 이용하면, \[\int_0^\infty e^{-\pi n^2t} t^{\frac{s}{2}} \frac{dt}{t} = {\pi}^{-\frac{s}{2}}\Gamma(\frac{s}{2})\frac{1}{n^s}\] - 형식적으로는 다음과 같은 적분에 의해, 리만제타함수를 얻을 수 있음.
\[\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)= \int_0^\infty (\frac{\theta(it)-1}{2})t^{\frac{s}{2}} \frac{dt}{t}\]
- 그러나 위의 적분은 모든 s에 대하여 수렴하지 않음. 따라서 다음과 같이 수정하여, 적분이 모든 s에 대하여 정의되도록 함.
\[\xi(s)=\pi^{-s/2}\Gamma(s/2)\zeta(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}\]
여기서는 자코비 세타함수의 성질 \[\theta(iy)=\frac{1}{\sqrt{y}}\theta(\frac{i}{y})\] 이 사용됨.
- http://people.reed.edu/~jerry/311/zeta.pdf analytic continuation
함수방정식
- 리만제타함수는 \(s=\frac{1}{2}\) 에 대하여 대칭성을 가지고, 그에 따른 함수방정식을 만족시킴.\[\xi(s) = \xi(1 - s)\] 즉,\[\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)\]
(증명)
자코비 세타함수의 모듈라 성질을 사용하면, \[\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t}= \int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}\]
이므로, \(\xi(s)\) 의 정의를 이용하면, \[\xi(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}+\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}\]
를 얻는다.
이 식에서 \(s \leftrightarrow 1-s\) 는 우변을 변화시키지 않음므로 함수방정식 \(\xi(s) = \xi(1 - s)\)을 얻는다.
(증명끝)
Dirichlet L-functions
zeta integral
Riemann zeta function
- $f\in \mathcal{S}(\mathbb{A})$
- define
$$ \zeta(f,s)=\int_{\mathbb{A}^{\times}}f(x)|x|^s\, d^{\times}x $$
- thm
The integral converges locally uniformly for $\Re(s)>1$ and so it defines a holomorphic function in that range, which extends to an meromorphic function on $\mathbb{C}$. This function is holomorphic away from the points $s=0,1$, where it has at most simple poles of residue $-f(0)$ and $\hat{f}(0)$, respectively. The zeta integral satisfies the functional equation One has $$ \zeta(f,s)=\zeta(\widehat{f},1-s) $$
Dirichlet L-functions
- $f\in \mathcal{S}(\mathbb{A})$
- $\chi$ : character of $\mathbb{A}^{\times}/\mathbb{Q}^{\times}$ with finite image
- define
$$ \zeta(f,\chi,s)=\int_{\mathbb{A}^{\times}}f(x)\chi(x)|x|^s\, d^{\times}x $$
- thm
Let $\chi\neq 1$. The integral converges locally uniformly for $\Re(s)>1$ and so it defines a holomorphic function in that range, which extends to an entire function on $\mathbb{C}$. One has $$ \zeta(f,\chi,s)=\zeta(\widehat{f},\overline{\chi},1-s) $$
expositions
- Alayont, Adelic approach to Dirichlet L-function
- [Leahy2010] James-Michael Leahy, An introduction to Tate's Thesis
- Herz, Carl, Stephen William Drury, and Maruti Ram Murty. 1997. Harmonic Analysis and Number Theory: Papers in Honour of Carl S. Herz : Proceedings of a Conference on Harmonic Analysis and Number Theory, April 15-19, 1996, McGill University, Montréal, Canada. American Mathematical Soc.