"Hecke L-functions"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
16번째 줄: 16번째 줄:
 
</blockquote>
 
</blockquote>
  
 +
 +
==Riemann zeta function==
 +
* {{수학노트|url=리만제타함수}}
 +
===해석적확장 (analytic continuation)===
 +
 +
* [[자코비 세타함수]]를 이용하여, 리만제타함수를 복소평면 전체로 확장할 수 있음.:<math>\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau}</math><br>
 +
 +
* [[감마함수]]:<math>\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}</math><br> 를 이용하면, :<math>\int_0^\infty e^{-\pi n^2t} t^{\frac{s}{2}} \frac{dt}{t} = {\pi}^{-\frac{s}{2}}\Gamma(\frac{s}{2})\frac{1}{n^s}</math><br>
 +
* 형식적으로는 다음과 같은 적분에 의해, 리만제타함수를 얻을 수 있음.
 +
:<math>\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)= \int_0^\infty (\frac{\theta(it)-1}{2})t^{\frac{s}{2}} \frac{dt}{t}</math>
 +
 +
* 그러나 위의 적분은 모든 s에 대하여 수렴하지 않음. 따라서 다음과 같이 수정하여, 적분이 모든 s에 대하여 정의되도록 함.
 +
:<math>\xi(s)=\pi^{-s/2}\Gamma(s/2)\zeta(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}</math>
 +
 +
여기서는 [[자코비 세타함수]]의 성질
 +
:<math>\theta(iy)=\frac{1}{\sqrt{y}}\theta(\frac{i}{y})</math>
 +
이 사용됨.
 +
 +
* [http://people.reed.edu/%7Ejerry/311/zeta.pdf http://people.reed.edu/~jerry/311/zeta.pdf] analytic continuation
 +
 +
 +
 +
===함수방정식===
 +
 +
*  리만제타함수는 <math>s=\frac{1}{2}</math> 에 대하여 대칭성을 가지고, 그에 따른 함수방정식을 만족시킴.:<math>\xi(s) = \xi(1 - s)</math> 즉,:<math>\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)</math>
 +
 +
(증명)
 +
 +
[[자코비 세타함수]]의 모듈라 성질을 사용하면,
 +
:<math>\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t}= \int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}</math>
 +
 +
이므로, <math>\xi(s)</math> 의 정의를 이용하면,
 +
:<math>\xi(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}+\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}</math>
 +
 +
를 얻는다.
 +
 +
이 식에서 <math>s \leftrightarrow 1-s</math> 는 우변을 변화시키지 않음므로 함수방정식 <math>\xi(s) = \xi(1 - s)</math>을 얻는다.
 +
 +
(증명끝)
  
 
==Dirichlet L-functions==
 
==Dirichlet L-functions==

2014년 7월 6일 (일) 16:39 판

introduction

In the early 20th century, Erich Hecke attempted to find a further generalization of the Dirichlet L-series and the Dedekind zeta function. In 1920, he introduced the notion of a Grossencharakter, an ideal class character of a number field, and established the analytic continuation and functional equation of its associated L-series, the Hecke L-series. In 1950, John Tate, following the suggestion of his advisor, Emil Artin, recast Hecke's work. Tate provided a more elegant proof of the functional equation of the Hecke L-series by using Fourier analysis on the adeles and employing a reformulation of the Grossencharakter in terms of a character on the ideles. Tate's work now is generally understood as the GL(1) case of automorphic forms


Riemann zeta function

해석적확장 (analytic continuation)

  • 자코비 세타함수를 이용하여, 리만제타함수를 복소평면 전체로 확장할 수 있음.\[\theta(\tau)= \sum_{n=-\infty}^\infty e^{\pi i n^2 \tau}\]
  • 감마함수\[\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}\]
    를 이용하면, \[\int_0^\infty e^{-\pi n^2t} t^{\frac{s}{2}} \frac{dt}{t} = {\pi}^{-\frac{s}{2}}\Gamma(\frac{s}{2})\frac{1}{n^s}\]
  • 형식적으로는 다음과 같은 적분에 의해, 리만제타함수를 얻을 수 있음.

\[\xi(s) : = \pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)= \int_0^\infty (\frac{\theta(it)-1}{2})t^{\frac{s}{2}} \frac{dt}{t}\]

  • 그러나 위의 적분은 모든 s에 대하여 수렴하지 않음. 따라서 다음과 같이 수정하여, 적분이 모든 s에 대하여 정의되도록 함.

\[\xi(s)=\pi^{-s/2}\Gamma(s/2)\zeta(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}\]

여기서는 자코비 세타함수의 성질 \[\theta(iy)=\frac{1}{\sqrt{y}}\theta(\frac{i}{y})\] 이 사용됨.


함수방정식

  • 리만제타함수는 \(s=\frac{1}{2}\) 에 대하여 대칭성을 가지고, 그에 따른 함수방정식을 만족시킴.\[\xi(s) = \xi(1 - s)\] 즉,\[\pi^{-s/2}\ \Gamma\left(\frac{s}{2}\right)\ \zeta(s)=\pi^{-(1-s)/2}\ \Gamma\left(\frac{1-s}{2}\right)\ \zeta(1-s)\]

(증명)

자코비 세타함수의 모듈라 성질을 사용하면, \[\int_0^1 (\theta(it)-\frac{1}{\sqrt{t}})t^{\frac{s}{2}} \frac{dt}{t}= \int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}\]

이므로, \(\xi(s)\) 의 정의를 이용하면, \[\xi(s) = \frac{1}{s-1}-\frac{1}{s} +\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{1-s}{2}} \frac{dt}{t}+\frac{1}{2}\int_1^\infty (\theta(it)-1)t^{\frac{s}{2}} \frac{dt}{t}\]

를 얻는다.

이 식에서 \(s \leftrightarrow 1-s\) 는 우변을 변화시키지 않음므로 함수방정식 \(\xi(s) = \xi(1 - s)\)을 얻는다.

(증명끝)

Dirichlet L-functions


zeta integral

Riemann zeta function

  • $f\in \mathcal{S}(\mathbb{A})$
  • define

$$ \zeta(f,s)=\int_{\mathbb{A}^{\times}}f(x)|x|^s\, d^{\times}x $$

thm

The integral converges locally uniformly for $\Re(s)>1$ and so it defines a holomorphic function in that range, which extends to an meromorphic function on $\mathbb{C}$. This function is holomorphic away from the points $s=0,1$, where it has at most simple poles of residue $-f(0)$ and $\hat{f}(0)$, respectively. The zeta integral satisfies the functional equation One has $$ \zeta(f,s)=\zeta(\widehat{f},1-s) $$


Dirichlet L-functions

  • $f\in \mathcal{S}(\mathbb{A})$
  • $\chi$ : character of $\mathbb{A}^{\times}/\mathbb{Q}^{\times}$ with finite image
  • define

$$ \zeta(f,\chi,s)=\int_{\mathbb{A}^{\times}}f(x)\chi(x)|x|^s\, d^{\times}x $$

thm

Let $\chi\neq 1$. The integral converges locally uniformly for $\Re(s)>1$ and so it defines a holomorphic function in that range, which extends to an entire function on $\mathbb{C}$. One has $$ \zeta(f,\chi,s)=\zeta(\widehat{f},\overline{\chi},1-s) $$


related items


expositions

  • Alayont, Adelic approach to Dirichlet L-function
  • [Leahy2010] James-Michael Leahy, An introduction to Tate's Thesis
  • Herz, Carl, Stephen William Drury, and Maruti Ram Murty. 1997. Harmonic Analysis and Number Theory: Papers in Honour of Carl S. Herz : Proceedings of a Conference on Harmonic Analysis and Number Theory, April 15-19, 1996, McGill University, Montréal, Canada. American Mathematical Soc.