"Hubbard model"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
2번째 줄: | 2번째 줄: | ||
* The Hubbard model describes hopping electrons on a lattice | * The Hubbard model describes hopping electrons on a lattice | ||
+ | * 1968 Lieb and We | ||
+ | * application of Bethe | ||
9번째 줄: | 11번째 줄: | ||
<h5>Lieb-Wu equations</h5> | <h5>Lieb-Wu equations</h5> | ||
− | * describing Eigenstates of the Hubbard Hamiltonian<br><math>\exp(ik_jL)=\prod_{l=1}^{M}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}</math>, <math>j=1,\cdots, N</math><br><math>\ | + | * describing Eigenstates of the Hubbard Hamiltonian<br><math>\exp(ik_jL)=\prod_{l=1}^{M}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}</math>, <math>j=1,\cdots, N</math><br><math>\prod_{j=1}^{N}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}=\prod_{m=1,m\neq l}^{M}\frac{\lambda_{l}-\lambda_{m}-2i u}{\lambda_{l}-\lambda_{m}+2i u}</math>, <math>l=1,\cdots, M</math><br> |
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5>string hypothesis</h5> | ||
2012년 8월 7일 (화) 09:39 판
introduction
- The Hubbard model describes hopping electrons on a lattice
- 1968 Lieb and We
- application of Bethe
Lieb-Wu equations
- describing Eigenstates of the Hubbard Hamiltonian
\(\exp(ik_jL)=\prod_{l=1}^{M}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}\), \(j=1,\cdots, N\)
\(\prod_{j=1}^{N}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}=\prod_{m=1,m\neq l}^{M}\frac{\lambda_{l}-\lambda_{m}-2i u}{\lambda_{l}-\lambda_{m}+2i u}\), \(l=1,\cdots, M\)
string hypothesis
history
encyclopedia
- http://en.wikipedia.org/wiki/Hubbard_model
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- The One-Dimensional Hubbard Model
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
articles
- Lax Pair for the One-Dimensional Hubbard Model
- Miki Wadati, Eugenio Olmedilla and Yasuhiro Akutsu, 1986
- Miki Wadati, Eugenio Olmedilla and Yasuhiro Akutsu, 1986
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/10.1143/JPSJ.56.1340
question and answers(Math Overflow)
blogs
experts on the field