"Hubbard model"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
2번째 줄: 2번째 줄:
  
 
* The Hubbard model describes hopping electrons on a lattice
 
* The Hubbard model describes hopping electrons on a lattice
 +
* 1968 Lieb and We
 +
* application of Bethe
  
 
 
 
 
9번째 줄: 11번째 줄:
 
<h5>Lieb-Wu equations</h5>
 
<h5>Lieb-Wu equations</h5>
  
*  describing Eigenstates of the Hubbard Hamiltonian<br><math>\exp(ik_jL)=\prod_{l=1}^{M}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}</math>, <math>j=1,\cdots, N</math><br><math>\exp(ik_jL)=(-1)^{n-1}\prod_{l=1, l\neq j}^{n}\frac{k_j-k_l+ic}{k_j-k_l-ic}</math><br>
+
*  describing Eigenstates of the Hubbard Hamiltonian<br><math>\exp(ik_jL)=\prod_{l=1}^{M}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}</math>, <math>j=1,\cdots, N</math><br><math>\prod_{j=1}^{N}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}=\prod_{m=1,m\neq l}^{M}\frac{\lambda_{l}-\lambda_{m}-2i u}{\lambda_{l}-\lambda_{m}+2i u}</math>, <math>l=1,\cdots, M</math><br>
  
 
 
 
 
 +
 +
 
 +
 +
 
 +
 +
<h5>string hypothesis</h5>
  
 
 
 
 

2012년 8월 7일 (화) 09:39 판

introduction
  • The Hubbard model describes hopping electrons on a lattice
  • 1968 Lieb and We
  • application of Bethe

 

 

Lieb-Wu equations
  • describing Eigenstates of the Hubbard Hamiltonian
    \(\exp(ik_jL)=\prod_{l=1}^{M}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}\), \(j=1,\cdots, N\)
    \(\prod_{j=1}^{N}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}=\prod_{m=1,m\neq l}^{M}\frac{\lambda_{l}-\lambda_{m}-2i u}{\lambda_{l}-\lambda_{m}+2i u}\), \(l=1,\cdots, M\)

 

 

 

string hypothesis

 

 

 

history

 

 

related items
  •  

 

encyclopedia

 

 

books

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links