"Hubbard model"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction</h5>
  
 
* The Hubbard model describes hopping electrons on a lattice
 
* The Hubbard model describes hopping electrons on a lattice
14번째 줄: 14번째 줄:
 
 
 
 
  
<h5>Lieb-Wu equations</h5>
+
==Lieb-Wu equations</h5>
  
 
*  describing Eigenstates of the Hubbard Hamiltonian<br><math>\exp(ik_jL)=\prod_{l=1}^{M}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}</math>, <math>j=1,\cdots, N</math><br><math>\prod_{j=1}^{N}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}=\prod_{m=1,m\neq l}^{M}\frac{\lambda_{l}-\lambda_{m}-2i u}{\lambda_{l}-\lambda_{m}+2i u}</math>, <math>l=1,\cdots, M</math><br>
 
*  describing Eigenstates of the Hubbard Hamiltonian<br><math>\exp(ik_jL)=\prod_{l=1}^{M}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}</math>, <math>j=1,\cdots, N</math><br><math>\prod_{j=1}^{N}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}=\prod_{m=1,m\neq l}^{M}\frac{\lambda_{l}-\lambda_{m}-2i u}{\lambda_{l}-\lambda_{m}+2i u}</math>, <math>l=1,\cdots, M</math><br>
24번째 줄: 24번째 줄:
 
 
 
 
  
<h5>string hypothesis</h5>
+
==string hypothesis</h5>
  
 
 
 
 
32번째 줄: 32번째 줄:
 
 
 
 
  
<h5>history</h5>
+
==history</h5>
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
40번째 줄: 40번째 줄:
 
 
 
 
  
<h5>related items</h5>
+
==related items</h5>
  
 
*  
 
*  
57번째 줄: 57번째 줄:
 
 
 
 
  
<h5>books</h5>
+
==books</h5>
  
 
* [http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521802628 The One-Dimensional Hubbard Model]
 
* [http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521802628 The One-Dimensional Hubbard Model]
84번째 줄: 84번째 줄:
 
 
 
 
  
<h5>question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)</h5>
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
93번째 줄: 93번째 줄:
 
 
 
 
  
<h5>blogs</h5>
+
==blogs</h5>
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
103번째 줄: 103번째 줄:
 
 
 
 
  
<h5>experts on the field</h5>
+
==experts on the field</h5>
  
 
* http://arxiv.org/
 
* http://arxiv.org/
111번째 줄: 111번째 줄:
 
 
 
 
  
<h5>links</h5>
+
==links</h5>
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]

2012년 10월 28일 (일) 13:05 판

==introduction

  • The Hubbard model describes hopping electrons on a lattice
  • 1968 Lieb and We
    • application of Bethe ansatz
  • 1972 Takahasi
    • string hypothesis
    • replace the Lieb-Wu equations by simpler ones
    • proceeded to drive a set of non-linear integral equations known as thermodynamic Bethe ansatz equations
  • algebraic Bethe ansatz for the Hubbard model

 

 

==Lieb-Wu equations

  • describing Eigenstates of the Hubbard Hamiltonian
    \(\exp(ik_jL)=\prod_{l=1}^{M}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}\), \(j=1,\cdots, N\)
    \(\prod_{j=1}^{N}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}=\prod_{m=1,m\neq l}^{M}\frac{\lambda_{l}-\lambda_{m}-2i u}{\lambda_{l}-\lambda_{m}+2i u}\), \(l=1,\cdots, M\)

 

 

 

==string hypothesis

 

 

 

==history

 

 

==related items

  •  

 

encyclopedia

 

 

==books

 

 

articles

 

 

==question and answers(Math Overflow)

 

 

==blogs

 

 

==experts on the field

 

 

==links