"Hubbard model"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
59번째 줄: | 59번째 줄: | ||
==articles== | ==articles== | ||
− | + | * Popkov, Vladislav, and Tomaz Prosen. “Infinitely Dimensional Lax Structure for One-Dimensional Hubbard Model.” arXiv:1501.02230 [cond-Mat, Physics:math-Ph, Physics:nlin], January 9, 2015. http://arxiv.org/abs/1501.02230. | |
− | * Miki | + | * Wadati, Miki, Eugenio Olmedilla, and Yasuhiro Akutsu. “Lax Pair for the One-Dimensional Hubbard Model.” Journal of the Physical Society of Japan 56, no. 4 (April 15, 1987): 1340–47. doi:[http://dx.doi.org/10.1143/JPSJ.56.1340 10.1143/JPSJ.56.1340]. |
[[분류:integrable systems]] | [[분류:integrable systems]] | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
[[분류:math and physics]] | [[분류:math and physics]] |
2015년 1월 12일 (월) 00:55 판
introduction
- The Hubbard model describes hopping electrons on a lattice
- 1968 Lieb and Wu
- application of Bethe ansatz
- 1972 Takahasi
- string hypothesis
- replace the Lieb-Wu equations by simpler ones
- proceeded to drive a set of non-linear integral equations known as thermodynamic Bethe ansatz equations
- algebraic Bethe ansatz for the Hubbard model
Lieb-Wu equations
- describing Eigenstates of the Hubbard Hamiltonian
- Bethe ansatz equation
\[\exp(ik_jL)=\prod_{l=1}^{M}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u},\,j=1,\cdots, N\] \[\prod_{j=1}^{N}\frac{\lambda_{l}-\sin k_j-i u}{\lambda_{l}-\sin k_j+i u}=\prod_{m=1,m\neq l}^{M}\frac{\lambda_{l}-\lambda_{m}-2i u}{\lambda_{l}-\lambda_{m}+2i u},\,l=1,\cdots, M\]
string hypothesis
history
encyclopedia
books
articles
- Popkov, Vladislav, and Tomaz Prosen. “Infinitely Dimensional Lax Structure for One-Dimensional Hubbard Model.” arXiv:1501.02230 [cond-Mat, Physics:math-Ph, Physics:nlin], January 9, 2015. http://arxiv.org/abs/1501.02230.
- Wadati, Miki, Eugenio Olmedilla, and Yasuhiro Akutsu. “Lax Pair for the One-Dimensional Hubbard Model.” Journal of the Physical Society of Japan 56, no. 4 (April 15, 1987): 1340–47. doi:10.1143/JPSJ.56.1340.