"GKZ hypergeometric functions"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 (section 'articles' updated) |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | * To a torus action on a complex vector space, Gelfand, Kapranov and Zelevinsky introduce a system of differential equations, called the GKZ hypergeometric system. | ||
+ | |||
+ | |||
==expositions== | ==expositions== | ||
* EDUARDO CATTANI, [https://www.math.umass.edu/~cattani/hypergeom_lectures.pdf Three Lectures on Hypergeometric Functions] | * EDUARDO CATTANI, [https://www.math.umass.edu/~cattani/hypergeom_lectures.pdf Three Lectures on Hypergeometric Functions] |
2016년 5월 5일 (목) 01:16 판
introduction
- To a torus action on a complex vector space, Gelfand, Kapranov and Zelevinsky introduce a system of differential equations, called the GKZ hypergeometric system.
expositions
- EDUARDO CATTANI, Three Lectures on Hypergeometric Functions
- Stienstra, Jan. 2005. “GKZ Hypergeometric Structures.” arXiv:math/0511351 (November 14). http://arxiv.org/abs/math/0511351.
articles
- Lei Fu, $\ell$-adic GKZ hypergeometric sheaf and exponential sums, arXiv:1208.1373 [math.AG], August 07 2012, http://arxiv.org/abs/1208.1373
- Artamonov, D. V. ‘The Stokes Phenomenon for an Irregular Gelfand-Kapranov-Zelevinsky System Associated with the Rank One Lattice’. arXiv:1503.06345 [math], 21 March 2015. http://arxiv.org/abs/1503.06345.