"GKZ hypergeometric functions"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
14번째 줄: | 14번째 줄: | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
[[분류:hypergeometric functions]] | [[분류:hypergeometric functions]] | ||
+ | [[분류:migrate]] |
2020년 11월 13일 (금) 01:45 판
introduction
- To a torus action on a complex vector space, Gelfand, Kapranov and Zelevinsky introduce a system of differential equations, called the GKZ hypergeometric system.
expositions
- EDUARDO CATTANI, Three Lectures on Hypergeometric Functions
- Stienstra, Jan. 2005. “GKZ Hypergeometric Structures.” arXiv:math/0511351 (November 14). http://arxiv.org/abs/math/0511351.
articles
- Lei Fu, $\ell$-adic GKZ hypergeometric sheaf and exponential sums, arXiv:1208.1373 [math.AG], August 07 2012, http://arxiv.org/abs/1208.1373
- Artamonov, D. V. ‘The Stokes Phenomenon for an Irregular Gelfand-Kapranov-Zelevinsky System Associated with the Rank One Lattice’. arXiv:1503.06345 [math], 21 March 2015. http://arxiv.org/abs/1503.06345.