"Gelfand-Tsetlin bases"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 +
* $L(\lambda)$ : finite-dimensional irreducible representation of $\mathfrak{gl}_n$ with the highest weight $\lambda=(\lambda_1\geq \lambda_2\geq \cdots\geq\lambda_n\geq 0)$ of weakly decreasing non-negative integer sequence
 +
* the set of all Gelfand-Zetlin patterns form a basis of $L(\lambda)$
 +
 +
 +
 +
==identity==
 +
* LHS is the Weyl dimension formula for a representation of $\mathfrak{gl}_n$, and RHS is the number of elements in Gelfand-Zetlin basis
 +
* http://math.stackexchange.com/questions/1660/direct-proof-of-gelfand-zetlin-identity
  
  
8번째 줄: 16번째 줄:
 
==expositions==
 
==expositions==
 
* Molev, A. I. 2002. “Gelfand-Tsetlin Bases for Classical Lie Algebras”. ArXiv e-print math/0211289. http://arxiv.org/abs/math/0211289.
 
* Molev, A. I. 2002. “Gelfand-Tsetlin Bases for Classical Lie Algebras”. ArXiv e-print math/0211289. http://arxiv.org/abs/math/0211289.
 +
 +
 +
==articles==
 +
* Refaghat, H., and M. Shahryari. 2010. “A Formula for the Number of Gelfand-Zetlin Patterns.” Journal of Generalized Lie Theory and Applications 4: Art. ID G100201, 8. doi:10.4303/jglta/G100201.
 +
 +
* Gel'fand, I. M., and M. L. Cetlin. 1950. “Finite-dimensional Representations of the Group of Unimodular Matrices.” Doklady Akad. Nauk SSSR (N.S.) 71: 825–828.
 +
  
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:Lie theory]]
 
[[분류:Lie theory]]

2013년 9월 23일 (월) 08:22 판

introduction

  • $L(\lambda)$ : finite-dimensional irreducible representation of $\mathfrak{gl}_n$ with the highest weight $\lambda=(\lambda_1\geq \lambda_2\geq \cdots\geq\lambda_n\geq 0)$ of weakly decreasing non-negative integer sequence
  • the set of all Gelfand-Zetlin patterns form a basis of $L(\lambda)$


identity


encyclopedia


expositions


articles

  • Refaghat, H., and M. Shahryari. 2010. “A Formula for the Number of Gelfand-Zetlin Patterns.” Journal of Generalized Lie Theory and Applications 4: Art. ID G100201, 8. doi:10.4303/jglta/G100201.
  • Gel'fand, I. M., and M. L. Cetlin. 1950. “Finite-dimensional Representations of the Group of Unimodular Matrices.” Doklady Akad. Nauk SSSR (N.S.) 71: 825–828.