"Infinite Dimensional Unitary Representations of Lie Groups"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
4번째 줄: 4번째 줄:
  
 
==expositions==
 
==expositions==
* Schmid, Wilfried, and Kari Vilonen. ‘Hodge Theory and Unitary Representations, in the Example of $\mathrm{SL}(2,\mathbb{R})$’. arXiv:1506.00200 [math], 31 May 2015. http://arxiv.org/abs/1506.00200.
+
* Schmid, Wilfried, and Kari Vilonen. ‘Hodge Theory and Unitary Representations, in the Example of <math>\mathrm{SL}(2,\mathbb{R})</math>’. arXiv:1506.00200 [math], 31 May 2015. http://arxiv.org/abs/1506.00200.
 
* Mitsuo, Sugiura. ‘The Origins of Infinite Dimensional Unitary Representations of Lie Groups’. In The Intersection of History and Mathematics, edited by Professor Ch Sasaki, Professor M. Sugiura, and Professor J. W. Dauben, 231–40. Science Networks · Historical Studies 15. Birkhäuser Basel, 1994. http://link.springer.com/chapter/10.1007/978-3-0348-7521-9_15.
 
* Mitsuo, Sugiura. ‘The Origins of Infinite Dimensional Unitary Representations of Lie Groups’. In The Intersection of History and Mathematics, edited by Professor Ch Sasaki, Professor M. Sugiura, and Professor J. W. Dauben, 231–40. Science Networks · Historical Studies 15. Birkhäuser Basel, 1994. http://link.springer.com/chapter/10.1007/978-3-0348-7521-9_15.
 
[[분류:migrate]]
 
[[분류:migrate]]

2020년 11월 13일 (금) 03:53 판

introduction

  • Bargmann[1947] on SL(2, R) and I. M. Gelfand-M. A. Naimark[1947] on SL(2,C)


expositions

  • Schmid, Wilfried, and Kari Vilonen. ‘Hodge Theory and Unitary Representations, in the Example of \(\mathrm{SL}(2,\mathbb{R})\)’. arXiv:1506.00200 [math], 31 May 2015. http://arxiv.org/abs/1506.00200.
  • Mitsuo, Sugiura. ‘The Origins of Infinite Dimensional Unitary Representations of Lie Groups’. In The Intersection of History and Mathematics, edited by Professor Ch Sasaki, Professor M. Sugiura, and Professor J. W. Dauben, 231–40. Science Networks · Historical Studies 15. Birkhäuser Basel, 1994. http://link.springer.com/chapter/10.1007/978-3-0348-7521-9_15.