"BRST quantization and cohomology"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 +
<h5>introduction</h5>
 +
 
Gauge theory = principal G-bundle
 
Gauge theory = principal G-bundle
 
 
 
  
 
We require a quantization of gauge theory.
 
We require a quantization of gauge theory.
  
BRST quantization is one way to quantize the theory and is a part of parh integral.
+
BRST quantization is one way to quantize the theory and is a part of path integral.
  
 
Gauge theory allows 'local symmetry' which should be ignored to be physical. 
 
Gauge theory allows 'local symmetry' which should be ignored to be physical. 
13번째 줄: 13번째 줄:
 
 
 
 
  
 
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items</h5>
  
<h5>간단한 소개</h5>
+
* [[물리학과 cohomology]]<br>
 
 
* [http://www.math.columbia.edu/%7Ewoit/wordpress/?p=1103 Notes on BRST II: Lie Algebra Cohomology, Physicist’s Version]
 
* [http://www.math.columbia.edu/%7Ewoit/wordpress/?p=1155 Notes on BRST III: Lie Algebra Cohomology]
 
 
 
<br>
 
  
 
 
 
 
 
<h5>관련된 다른 주제들</h5>
 
 
* [[물리학과 cohomology]]
 
  
 
 
 
 
  
<h5>표준적인 도서 및 추천도서</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books</h5>
  
 
* [[2009년 books and articles|찾아볼 수학책]]
 
* [[2009년 books and articles|찾아볼 수학책]]
* http://gigapedia.info/1/
 
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
44번째 줄: 34번째 줄:
 
 
 
 
  
<h5>참고할만한 자료</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
  
* http://www.zentralblatt-math.org/zmath/en/
 
*  
 
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
* http://viswiki.com/en/
+
* http://en.wikipedia.org/wiki/
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
+
* http://en.wikipedia.org/wiki/
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
+
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
* 다음백과사전 http://enc.daum.net/dic100/search.do?q=
 
  
 
 
 
 
59번째 줄: 46번째 줄:
 
 
 
 
  
<h5>이미지 검색</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">blogs</h5>
  
* http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
+
* [http://www.math.columbia.edu/%7Ewoit/wordpress/?p=1103 Notes on BRST II: Lie Algebra Cohomology, Physicist’s Version]
 +
* [http://www.math.columbia.edu/%7Ewoit/wordpress/?p=1155 Notes on BRST III: Lie Algebra Cohomology]
  
 
+
*  구글 블로그 검색<br>
 +
** http://blogsearch.google.com/blogsearch?q=
 +
** http://blogsearch.google.com/blogsearch?q=
 +
** http://blogsearch.google.com/blogsearch?q=
  
 
 
 
 
  
<h5>동영상</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
  
* http://www.youtube.com/results?search_type=&search_query=
+
* [[2010년 books and articles|논문정리]]
 +
* http://www.ams.org/mathscinet/search/publications.html?pg4=ALLF&s4=
 +
* http://www.zentralblatt-math.org/zmath/en/
 +
* http://pythagoras0.springnote.com/
 +
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
  
 
+
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
+
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
<h5>관련기사</h5>
 
 
 
네이버 뉴스 검색 (키워드 수정)
 
 
 
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
<h5>블로그</h5>
 
 
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 
 
 
 
 
 
 
 
 
  
 
 
 
 
  
<h5>TeX 작업</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">TeX </h5>

2009년 10월 20일 (화) 16:39 판

introduction

Gauge theory = principal G-bundle

We require a quantization of gauge theory.

BRST quantization is one way to quantize the theory and is a part of path integral.

Gauge theory allows 'local symmetry' which should be ignored to be physical. 

This ignoring process leads to the cohomoloy theory.

 

related items

 

 

books

 

 

encyclopedia

 

 

blogs

 

articles

 

TeX