"BRST quantization and cohomology"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
50번째 줄: 50번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">blogs</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">blogs</h5>
  
*   <br>
 
 
* [http://www.math.columbia.edu/%7Ewoit/notesonbrst.pdf http://www.math.columbia.edu/~woit/notesonbrst.pdf]
 
* [http://www.math.columbia.edu/%7Ewoit/notesonbrst.pdf http://www.math.columbia.edu/~woit/notesonbrst.pdf]
 
* [http://www.math.columbia.edu/%7Ewoit/wordpress/?p=1076 Notes on BRST I: Representation Theory and Quantum Mechanics]
 
* [http://www.math.columbia.edu/%7Ewoit/wordpress/?p=1076 Notes on BRST I: Representation Theory and Quantum Mechanics]
 
* [http://www.math.columbia.edu/%7Ewoit/wordpress/?p=1103 Notes on BRST II: Lie Algebra Cohomology, Physicist’s Version]
 
* [http://www.math.columbia.edu/%7Ewoit/wordpress/?p=1103 Notes on BRST II: Lie Algebra Cohomology, Physicist’s Version]
 
* [http://www.math.columbia.edu/%7Ewoit/wordpress/?p=1155 Notes on BRST III: Lie Algebra Cohomology]
 
* [http://www.math.columbia.edu/%7Ewoit/wordpress/?p=1155 Notes on BRST III: Lie Algebra Cohomology]
* Notes on BRST IV: Lie Algebra Cohomology for Semi-simple Lie Algebras
+
* [http://www.math.columbia.edu/%7Ewoit/wordpress/?p=1216 Notes on BRST IV: Lie Algebra Cohomology for Semi-simple Lie Algebras]
 +
* [http://www.math.columbia.edu/%7Ewoit/wordpress/?p=1245 Notes on BRST V: Highest Weight Theory]
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>

2009년 10월 20일 (화) 17:22 판

introduction

Gauge theory = principal G-bundle

We require a quantization of gauge theory.

BRST quantization is one way to quantize the theory and is a part of path integral.

Gauge theory allows 'local symmetry' which should be ignored to be physical. 

This ignoring process leads to the cohomoloy theory.

 

related items

 

 

books

 

 

encyclopedia

 

http://bomber0.byus.net/

 

blogs

 

articles

 

TeX