"BRST quantization and cohomology"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
20번째 줄: | 20번째 줄: | ||
H^2(\mathfrak{g})=0 (i.e. no non-trivial central extension) | H^2(\mathfrak{g})=0 (i.e. no non-trivial central extension) | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 2em;">ghost variables</h5> | ||
+ | |||
+ | * [[#]]<br> | ||
+ | |||
+ | |||
27번째 줄: | 37번째 줄: | ||
<h5 style="margin: 0px; line-height: 2em;">nilpotency of BRST operator</h5> | <h5 style="margin: 0px; line-height: 2em;">nilpotency of BRST operator</h5> | ||
− | [http://bolvan.ph.utexas.edu/%7Evadim/Classes/2008f.homeworks/brst.pdf http://bolvan.ph.utexas.edu/~vadim/Classes/2008f.homeworks/brst.pdf] | + | * [http://bolvan.ph.utexas.edu/%7Evadim/Classes/2008f.homeworks/brst.pdf http://bolvan.ph.utexas.edu/~vadim/Classes/2008f.homeworks/brst.pdf]<br> |
2010년 11월 14일 (일) 08:00 판
introduction
- Gauge theory = principal G-bundle
- We require a quantization of gauge theory.
- BRST quantization is one way to quantize the theory and is a part of path integral.
- Gauge theory allows 'local symmetry' which should be ignored to be physical.
- This ignoring process leads to the cohomoloy theory.
- BRST = quantization procedure of a classical system with constraints by introducing odd variables (“ghosts”)
- the conditions D = 26 and α0 = 1 for the space-time dimension D and the zero-intercept α0 of leading trajectory are required by the nilpotency QB2 = 0 of the BRS charge
\Lambda_{\infty} semi-infinite form
\mathfrak{g} : \mathbb{Z}-graded Lie algebra
\sigma : anti-linear automorphism sending \mathfrak{g}_{n} to \mathfrak{g}_{-n}
H^2(\mathfrak{g})=0 (i.e. no non-trivial central extension)
ghost variables
nilpotency of BRST operator
books
- 찾아볼 수학책
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
encyclopedia
- http://en.wikipedia.org/wiki/BRST_quantization
- http://www.scholarpedia.org/article/Becchi-Rouet-Stora-Tyutin_symmetry
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
expositions
- Introduction to Lie algebra cohomology with a view towards BRST cohomology
- Friedrich Wagemann, 2010-8
- Friedrich Wagemann, 2010-8
- PG minicourse: BRST cohomology
articles
- Quantum Group as Semi-infinite Cohomology
- Igor B. Frenkel, Anton M. Zeitlin
- BRST cohomology in classical mechanics
- Symplectic Reduction, BRS Cohomology, and Infinite-Dimensional Clifford algebras
- B. Kostant, S. Sternberg, Ann. Physics 176 (1987) 49–113
- Semi-infinite cohomology and string theory
- I. B. Frenkel,. H. Garland, and. G. J. Zuckerman, PNAS November 1, 1986 vol. 83 no. 22 8442-8446
- http://dx.doi.org/10.1007/BF01466770
blogs
- http://www.math.columbia.edu/~woit/notesonbrst.pdf
- http://www.math.columbia.edu/~woit/wordpress/?cat=12
- Notes on BRST I: Representation Theory and Quantum Mechanics
- Notes on BRST II: Lie Algebra Cohomology, Physicist’s Version
- Notes on BRST III: Lie Algebra Cohomology
- Notes on BRST IV: Lie Algebra Cohomology for Semi-simple Lie Algebras
- Notes on BRST V: Highest Weight Theory
- 구글 블로그 검색