"BRST quantization and cohomology"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
<h5>introduction</h5>
 
<h5>introduction</h5>
  
* [[Gauge theory]] =<br>
+
* [[Gauge theory]] = principal G-bundle<br>
principal G-bundle<br>
 
 
*  We require a quantization of gauge theory.<br>
 
*  We require a quantization of gauge theory.<br>
 
*  BRST quantization is one way to quantize the theory and is a part of path integral.<br>
 
*  BRST quantization is one way to quantize the theory and is a part of path integral.<br>
61번째 줄: 60번째 줄:
 
* [[물리학과 cohomology]]<br>
 
* [[물리학과 cohomology]]<br>
 
* [[homological algebra|Homological algebra]]<br>
 
* [[homological algebra|Homological algebra]]<br>
*   <br>
 
  
 
 
 
 
69번째 줄: 67번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books</h5>
  
 +
*   <br>
 
* [[2009년 books and articles|찾아볼 수학책]]
 
* [[2009년 books and articles|찾아볼 수학책]]
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
  
 
 
 
 
96번째 줄: 90번째 줄:
 
<h5 style="margin: 0px; line-height: 2em;">expositions</h5>
 
<h5 style="margin: 0px; line-height: 2em;">expositions</h5>
  
* [http://www.math.sciences.univ-nantes.fr/%7Ewagemann/LAlecture.pdf Introduction to Lie algebra cohomology with a view towards BRST cohomology]<br>
+
* [http://www.math.sciences.univ-nantes.fr/%7Ewagemann/LAlecture.pdf Introduction to Lie algebra cohomology with a view towards BRST cohomology] ,Friedrich Wagemann, 2010-8<br>
**  Friedrich Wagemann, 2010-8<br>
 
 
* [http://empg.maths.ed.ac.uk/Activities/BRST/ PG minicourse: BRST cohomology]<br>
 
* [http://empg.maths.ed.ac.uk/Activities/BRST/ PG minicourse: BRST cohomology]<br>
  
106번째 줄: 99번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
  
* Quantum Group as Semi-infinite Cohomology<br>
+
* Igor B. Frenkel, Anton M. Zeitlin, Quantum Group as Semi-infinite Cohomology
** Igor B. Frenkel, Anton M. Zeitlin
+
* van Holten, J. W., The BRST complex and the cohomology of compact lie algebras
The BRST complex and the cohomology of compact lie algebras<br>
+
* D. Bernard and G. Felder, 1990, [http://dx.doi.org/10.1007/BF02096498 Fock representations and BRST cohomology inSL(2) current algebra]
** van Holten, J. W.
 
* [http://dx.doi.org/10.1007/BF02096498 Fock representations and BRST cohomology inSL(2) current algebra]<br>
 
** D. Bernard and G. Felder, 1990
 
 
* [http://dx.doi.org/10.1007/BF01466770 BRST cohomology in classical mechanics]
 
* [http://dx.doi.org/10.1007/BF01466770 BRST cohomology in classical mechanics]
* Symplectic Reduction, BRS Cohomology, and Infinite-Dimensional Clifford algebras<br>
+
* Symplectic Reduction, BRS Cohomology, and Infinite-Dimensional Clifford algebras, B. Kostant, S. Sternberg, Ann. Physics 176 (1987) 49–113
** B. Kostant, S. Sternberg, Ann. Physics 176 (1987) 49–113
 
 
* [http://www.pnas.org/content/83/22/8442.abstract Semi-infinite cohomology and string theory]<br>
 
* [http://www.pnas.org/content/83/22/8442.abstract Semi-infinite cohomology and string theory]<br>
 
** I. B. Frenkel,. H. Garland, and. G. J. Zuckerman, PNAS November 1, 1986 vol. 83 no. 22 8442-8446
 
** I. B. Frenkel,. H. Garland, and. G. J. Zuckerman, PNAS November 1, 1986 vol. 83 no. 22 8442-8446

2011년 4월 23일 (토) 06:59 판

introduction
  • Gauge theory = principal G-bundle
  • We require a quantization of gauge theory.
  • BRST quantization is one way to quantize the theory and is a part of path integral.
  • Gauge theory allows 'local symmetry' which should be ignored to be physical. 
  • This ignoring process leads to the cohomoloy theory.
  • BRST = quantization procedure of a classical system with constraints by introducing odd variables (“ghosts”)
  • the conditions D = 26 and α0 = 1 for the space-time dimension D and the zero-intercept α0 of leading trajectory are required by the nilpotency QB2 = 0 of the BRS charge

 

 

\Lambda_{\infty} semi-infinite form

\mathfrak{g} : \mathbb{Z}-graded Lie algebra

\sigma : anti-linear automorphism sending \mathfrak{g}_{n} to \mathfrak{g}_{-n}

H^2(\mathfrak{g})=0 (i.e. no non-trivial central extension)

 

 

ghost variables

 

 

 

nilpotency of BRST operator

 

 

applications
  • BRST approach to minimal models
  • BRST approach to no-ghost theorem
  • BRST approach to coset constructions

 

 

 

related items

 

 

books

 

 

encyclopedia

 

[1]

 

 

expositions

 

 

articles

 

blogs

 

 

 

TeX