"Mirror symmetry"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
50번째 줄: | 50번째 줄: | ||
[[분류:math and physics]] | [[분류:math and physics]] | ||
[[분류:duality]] | [[분류:duality]] | ||
+ | [[분류:migrate]] |
2020년 11월 13일 (금) 03:02 판
introduction
homological mirror symmetry
- 1994 Kontsevich
- categorical equivalence of the following two categories
- derived category of bounded complexes of coherent sheaves on a smooth, complete, algebraic variety $X$ over an algebraically closed field
- Fukaya category of the symplectic manifold $\tilde{X}$
elliptic curve case
- According to Kontsevich, the mirror partner of an algebraic manifold $M$ should be a symplectic manifold $\tilde{M}$ such that the derived category $D^b(M)$ of bounded complexes of coherent sheaves on $M$ is equivalent to a suitable version of Fukaya's category $F(\tilde{M})$ of Lagrangian submanifolds of $M$ equipped with a flat bundle. In this paper the authors verify this conjecture in the case when $M$ is an elliptic curve $E_{\tau}=\mathbb{C}/(\mathbb{Z}+\tau\mathbb{Z})$, where $\tau=a+bi, b>0$. Here the mirror partner is a torus $\tilde{E}=\mathbb{C}/(\mathbb{Z}+\mathbb{Z})$ with Kähler metric $b(dx^2+dy^2)$. It is also equipped with a form $B=a dx\wedge dy$. The authors give a beautiful, very explicit description of the two categories involved in the mirror duality.
books
exposition
- http://arxiv.org/abs/1506.07757
- Port, Andrew. “An Introduction to Homological Mirror Symmetry and the Case of Elliptic Curves.” arXiv:1501.00730 [math], January 4, 2015. http://arxiv.org/abs/1501.00730.
- Quigley, Callum. “Mirror Symmetry in Physics: The Basics.” arXiv:1412.8180 [hep-Th], December 28, 2014. http://arxiv.org/abs/1412.8180.
- Chan, Kwokwai. “SYZ Mirror Symmetry for Toric Varieties.” arXiv:1412.7231 [math-Ph], December 22, 2014. http://arxiv.org/abs/1412.7231.
- Clader, Emily, and Yongbin Ruan. “Mirror Symmetry Constructions.” arXiv:1412.1268 [hep-Th, Physics:math-Ph], December 3, 2014. http://arxiv.org/abs/1412.1268.
- Hosono, Shinobu, and Hiromichi Takagi. “Mirror Symmetry and Projective Geometry of Fourier-Mukai Partners.” arXiv:1410.1254 [math], October 6, 2014. http://arxiv.org/abs/1410.1254.
- Chan, Kwokwai. “The Strominger-Yau-Zaslow Conjecture and Its Impact.” arXiv:1408.6062 [math], August 26, 2014. http://arxiv.org/abs/1408.6062.
- Ueda, Kazushi. “Mirror Symmetry and K3 Surfaces.” arXiv:1407.1566 [math], July 6, 2014. http://arxiv.org/abs/1407.1566.
- http://www.kias.re.kr/file/NewsletterNo37.pdf
- Lectures on Mirror Symmetry, Derived Categories, and D-branes
Authors: Anton Kapustin, Dmitri Orlov http://arxiv.org/abs/math/0308173 - Yau, Shing-Tung, ed. 1992. Essays on Mirror Manifolds. Hong Kong: International Press. http://www.ams.org/mathscinet-getitem?mr=1191418.
articles
- Schaug, Andrew. “Quantum Mirror Symmetry for Borcea-Voisin Threefolds.” arXiv:1510.08333 [math-Ph], October 28, 2015. http://arxiv.org/abs/1510.08333.
- Cao, Yalong, and Naichung Conan Leung. “Remarks on Mirror Symmetry of Donaldson-Thomas Theory for Calabi-Yau 4-Folds.” arXiv:1506.04218 [math-Ph], June 12, 2015. http://arxiv.org/abs/1506.04218.
- Kanazawa, Atsushi, and Siu-Cheong Lau. “Geometric Transitions and SYZ Mirror Symmetry.” arXiv:1503.03829 [math], March 12, 2015. http://arxiv.org/abs/1503.03829.
- Sheridan, Nicholas. “Homological Mirror Symmetry for Calabi-Yau Hypersurfaces in Projective Space.” arXiv:1111.0632 [math], November 2, 2011. http://arxiv.org/abs/1111.0632.
- Hiep, Dang Tuan. “Rational Curves on Calabi-Yau Threefolds: Verifying Mirror Symmetry Predictions.” arXiv:1409.3712 [math], September 12, 2014. http://arxiv.org/abs/1409.3712.
- Polishchuk, Alexander, and Eric Zaslow. 1998. “Categorical Mirror Symmetry: The Elliptic Curve.” Advances in Theoretical and Mathematical Physics 2 (2): 443–470.
- Kontsevich, Maxim. 1995. “Homological Algebra of Mirror Symmetry.” In Proceedings of the International Congress of Mathematicians, Vol.\ 1, 2 (Zürich, 1994), 120–139. Basel: Birkhäuser. http://www.ams.org/mathscinet-getitem?mr=1403918.
- Candelas, Philip, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes. 1991. “A Pair of Calabi-Yau Manifolds as an Exactly Soluble Superconformal Theory.” Nuclear Physics. B 359 (1): 21–74. doi:10.1016/0550-3213(91)90292-6.
- Greene, B. R., and M. R. Plesser. 1990. “Duality in Calabi-Yau Moduli Space.” Nuclear Physics. B 338 (1): 15–37. doi:10.1016/0550-3213(90)90622-K.
- Candelas, P., M. Lynker, and R. Schimmrigk. 1990. “Calabi-Yau Manifolds in Weighted $\bf P_4$.” Nuclear Physics. B 341 (2): 383–402. doi:10.1016/0550-3213(90)90185-G.