"Talk on Siegel theta series and modular forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
 
(다른 사용자 한 명의 중간 판 22개는 보이지 않습니다)
5번째 줄: 5번째 줄:
  
 
==modular forms==
 
==modular forms==
* $\mathbb{H}=\{\tau\in \mathbb{C}|\Im \tau>0\}$
+
* <math>\mathbb{H}=\{\tau\in \mathbb{C}|\Im \tau>0\}</math>
* modular group $\Gamma=SL(2, \mathbb Z) = \left \{ \left. \left ( \begin{array}{cc}a & b \\ c & d \end{array} \right )\right| a, b, c, d \in \mathbb Z,\ ad-bc = 1 \right \}$
+
* modular group <math>\Gamma=SL(2, \mathbb Z) = \left \{ \left. \left ( \begin{array}{cc}a & b \\ c & d \end{array} \right )\right| a, b, c, d \in \mathbb Z,\ ad-bc = 1 \right \}</math>
* $\operatorname{PSL}(2,\mathbb{Z})=\operatorname{SL}(2,\mathbb{Z})/\{\pm I\}$ acts on $\mathbb{H}$ by
+
* <math>\operatorname{PSL}(2,\mathbb{Z})=\operatorname{SL}(2,\mathbb{Z})/\{\pm I\}</math> acts on <math>\mathbb{H}</math> by
 
:<math>\tau\mapsto\frac{a\tau+b}{c\tau+d}</math>
 
:<math>\tau\mapsto\frac{a\tau+b}{c\tau+d}</math>
for $\left ( \begin{array}{cc}a & b \\ c & d \end{array} \right )\in \operatorname{SL}(2,\mathbb{Z})$
+
for <math>\left ( \begin{array}{cc}a & b \\ c & d \end{array} \right )\in \operatorname{SL}(2,\mathbb{Z})</math>
  
 
;def  
 
;def  
A holomorphic function $f:\mathbb{H}\to \mathbb{C}$ is a modular form of weight $k$ (w.r.t. $SL(2, \mathbb Z)$) if
+
A holomorphic function <math>f:\mathbb{H}\to \mathbb{C}</math> is a modular form of weight <math>k</math> (w.r.t. <math>SL(2, \mathbb Z)</math>) if
 
# <math>f \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{k} f(\tau)</math>
 
# <math>f \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{k} f(\tau)</math>
# $f$ is "holomorphic at the cusp", i.e. it has a Fourier expansion of the following form
+
# <math>f</math> is "holomorphic at the cusp", i.e. it has a Fourier expansion of the following form
$$
+
:<math>
 
f(\tau)=\sum_{n=0}^{\infty}a(n)e^{2\pi i n \tau}
 
f(\tau)=\sum_{n=0}^{\infty}a(n)e^{2\pi i n \tau}
$$
+
</math>
  
 
===Eisenstein series===
 
===Eisenstein series===
* for an integer $k\geq 2$, define the Eisenstein series by
+
* for an integer <math>k\geq 2</math>, define the Eisenstein series by
$$
+
:<math>
 
E_{2k}(\tau) : =\frac{1}{2}\sum_{
 
E_{2k}(\tau) : =\frac{1}{2}\sum_{
 
\substack{
 
\substack{
28번째 줄: 28번째 줄:
 
}}
 
}}
 
\frac{1}{(c\tau+d )^{2k}}
 
\frac{1}{(c\tau+d )^{2k}}
$$
+
</math>
 
* Fourier expansion
 
* Fourier expansion
 
:<math>E_{2k}(\tau):= 1+\frac {2}{\zeta(1-2k)}\left(\sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^{n} \right)=1-\frac {4k}{B_{2k}}\left(\sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^{n} \right)</math>
 
:<math>E_{2k}(\tau):= 1+\frac {2}{\zeta(1-2k)}\left(\sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^{n} \right)=1-\frac {4k}{B_{2k}}\left(\sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^{n} \right)</math>
where $\zeta$ denotes the Riemann zeta function, $B_k$ Bernoulli number and $\sigma_r(n)=\sum_{d|n}d^r$
+
where <math>\zeta</math> denotes the Riemann zeta function, <math>B_k</math> Bernoulli number and <math>\sigma_r(n)=\sum_{d|n}d^r</math>
* this is a modular form of weight $2k$
+
* this is a modular form of weight <math>2k</math>
 
* for example
 
* for example
 
:<math>E_4(\tau)= 1+ 240\sum_{n=1}^\infty \sigma_3(n) q^{n}=1 + 240 q + 2160 q^2 + \cdots </math>
 
:<math>E_4(\tau)= 1+ 240\sum_{n=1}^\infty \sigma_3(n) q^{n}=1 + 240 q + 2160 q^2 + \cdots </math>
39번째 줄: 39번째 줄:
 
===the space of modular forms===
 
===the space of modular forms===
 
;thm
 
;thm
Let $M_k$ be the space of modular forms of weight $k$ and $M:=\bigoplus_{k\in \mathbb{Z}_{\geq 0}} M_k$. We have
+
Let <math>M_k</math> be the space of modular forms of weight <math>k</math> and <math>M:=\bigoplus_{k\in \mathbb{Z}_{\geq 0}} M_k</math>. We have
 
:<math>M=\mathbb{C}[E_4,E_6]</math>
 
:<math>M=\mathbb{C}[E_4,E_6]</math>
 
* dimension generating function
 
* dimension generating function
$$
+
:<math>
 
\sum_{k=0}^{\infty}\dim M_k x^k=\frac{1}{\left(1-x^4\right)\left(1-x^{6}\right)}=1+x^4+x^6+x^8+x^{10}+2 x^{12}+x^{14}+2 x^{16}+2 x^{18}+2 x^{20}+\cdots
 
\sum_{k=0}^{\infty}\dim M_k x^k=\frac{1}{\left(1-x^4\right)\left(1-x^{6}\right)}=1+x^4+x^6+x^8+x^{10}+2 x^{12}+x^{14}+2 x^{16}+2 x^{18}+2 x^{20}+\cdots
$$
+
</math>
  
 
==theta functions==
 
==theta functions==
 
===notation===
 
===notation===
* $\Lambda\subset \mathbb{R}^n$ : integral lattice, i.e. a free abelian group with a positive definite symmetric bilinear form, i.e. $x\cdot y\in \mathbb{Z}$ for all $x,y\in \Lambda$
+
* <math>\Lambda\subset \mathbb{R}^n</math> : integral lattice, i.e. a free abelian group with a positive definite symmetric bilinear form, i.e. <math>x\cdot y\in \mathbb{Z}</math> for all <math>x,y\in \Lambda</math>
* we will assume that $\Lambda$ is even, i.e., $x\cdot x\in 2\mathbb{Z}$
+
* we will assume that <math>\Lambda</math> is even, i.e., <math>x\cdot x\in 2\mathbb{Z}</math>
* for a basis of $\Lambda$, fix $M$, $n\times n$ matrix whose each row is a basis element
+
* for a basis of <math>\Lambda</math>, fix <math>M</math>, <math>n\times n</math> matrix whose each row is a basis element
* $A:=M^tM$, Gram matrix of $\Lambda$
+
* <math>A:=M^tM</math>, Gram matrix of <math>\Lambda</math>
  
 
===definition===
 
===definition===
* old problem in number theory : find the number of representations of a given integer by the quadratic form associated to $\Lambda$
+
* old problem in number theory : find the number of representations of a given integer by the quadratic form associated to <math>\Lambda</math>
* for a given integer $N$, determine the size of the set $\{x\in\Lambda|x\cdot x=2N\}$ or $\{\zeta\in \mathbb{Z}^n|\zeta A \zeta^{t} =2N\}$
+
* for a given integer <math>N</math>, determine the size of the set <math>\{x\in\Lambda|x\cdot x=2N\}</math> or <math>\{\zeta\in \mathbb{Z}^n|\zeta A \zeta^{t} =2N\}</math>
* denote it by $a(N)$
+
* denote it by <math>a(N)</math>
* theta function of $\Lambda$ is a holomorphic function on $\mathbb{H}$ given by
+
* theta function of <math>\Lambda</math> is a holomorphic function on <math>\mathbb{H}</math> given by
$$
+
:<math>
 
\Theta_\Lambda(\tau)=\sum_{x\in\Lambda}q^{\frac{x\cdot x}{2}}=\sum_{N=0}^\infty a(N)q^{N},
 
\Theta_\Lambda(\tau)=\sum_{x\in\Lambda}q^{\frac{x\cdot x}{2}}=\sum_{N=0}^\infty a(N)q^{N},
$$
+
</math>
where $q=e^{2\pi i \tau}$
+
where <math>q=e^{2\pi i \tau}</math>
  
 
==on theta functions of positive definite even unimodular lattices==
 
==on theta functions of positive definite even unimodular lattices==
 
===8차원===
 
===8차원===
* $\dim M_4=1$
+
* <math>\dim M_4=1</math> and thus
* $\theta_{E_8}$ is the same as the Eisenstein series $E_4$
+
:<math>\theta_{E_8}(\tau)=E_4(\tau)=1+240 q+2160 q^2+6720 q^3+17520 q^4+30240 q^5+\cdots</math>
$$\theta_{E_8}(\tau)=E_4(\tau)=1+240 q+2160 q^2+6720 q^3+17520 q^4+30240 q^5+\cdots$$
 
  
 
===16차원===
 
===16차원===
* $\dim M_8=1$
+
* <math>\dim M_8=1</math>, <math>E_8=E_4^2</math> and 
* theta functions of $E_8\oplus E_8$ and $D_{16}^{+}$ = Eisenstein series $E_8=E_4^2$
+
:<math>
$$
 
 
\theta_{E_8\oplus E_8}(\tau)=\theta_{D_{16}^{+}}(\tau)=E_8(\tau)\\
 
\theta_{E_8\oplus E_8}(\tau)=\theta_{D_{16}^{+}}(\tau)=E_8(\tau)\\
 
E_8(\tau)=1+480 q+61920 q^2+1050240 q^3+7926240 q^4+\cdots
 
E_8(\tau)=1+480 q+61920 q^2+1050240 q^3+7926240 q^4+\cdots
$$
+
</math>
  
 
===24차원===
 
===24차원===
 
* {{수학노트|url=24차원_짝수_자기쌍대_격자}}의 세타함수
 
* {{수학노트|url=24차원_짝수_자기쌍대_격자}}의 세타함수
 
* modular form of weight 12
 
* modular form of weight 12
* $M_{12}=\mathbb{C}\langle E_4^3,E_6^2\rangle$
+
* <math>M_{12}=\mathbb{C}\langle E_4^3,E_6^2\rangle</math>
* find $a,b$ such that $\theta_{M}=a E_4^3+ bE_6^2$
+
* let <math>{\rm gen}(L)</math> be the set of all isomorphim classes of 24-dimensional positive definite even unimodular lattices
* it can be easily found once we know the number of roots in $M$
+
* to compute <math>\theta_{\Lambda}</math>, find <math>a,b</math> such that <math>\theta_{\Lambda}=a E_4^3+ bE_6^2</math>
 +
* we can easily determine <math>a,b</math> once we know the number <math>r</math> of roots in <math>\Lambda</math> (the coefficient of <math>q</math> in <math>\theta_{\Lambda}</math>) by solving
 +
:<math> \left\{ \begin{array}{c} a+b=1 \\ 720 a - 1008 b=r \end{array} \right. </math>
 
* weighted average
 
* weighted average
$$\left( \sum_{M\in {\rm gen}(L)}\frac{\Theta_M(\tau)}{|{\rm Aut}(M)|}\right)\,\cdot\,
+
:<math>\left(\sum_{\Lambda\in {\rm gen}(L)}\frac{\Theta_{\Lambda}(\tau)}{|{\rm Aut}(\Lambda)|}\right)\,\cdot\,
\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1}=?$$
+
\left(\sum_{\Lambda\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(\Lambda)|}\right)^{-1}=?</math>
 
* we get
 
* we get
$$\left( \sum_{M\in {\rm gen}(L)}\frac{\Theta_M(\tau)}{|{\rm Aut}(M)|}\right)\,\cdot\,
+
:<math>\left( \sum_{\Lambda\in {\rm gen}(L)}\frac{\Theta_{\Lambda}(\tau)}{|{\rm Aut}(\Lambda)|}\right)\,\cdot\,
\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1}=E_{12}(\tau)$$
+
\left(\sum_{\Lambda\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(\Lambda)|}\right)^{-1}=E_{12}(\tau)</math>
where $E_{12}$ is the Eisenstein series
+
where <math>E_{12}</math> is the Eisenstein series
$$
+
:<math>
 
E_{12}(\tau)=1+\frac{65520 q}{691}+\frac{134250480 q^2}{691}+\frac{11606736960 q^3}{691}+\frac{274945048560 q^4}{691}+\frac{3199218815520 q^5}{691}+\cdots
 
E_{12}(\tau)=1+\frac{65520 q}{691}+\frac{134250480 q^2}{691}+\frac{11606736960 q^3}{691}+\frac{274945048560 q^4}{691}+\frac{3199218815520 q^5}{691}+\cdots
$$
+
</math>
  
==Siegel theta functions==
+
==Siegel theta series==
* Siegel theta series {{수학노트|url=격자의_지겔_세타_급수}}
+
* {{수학노트|url=격자의_지겔_세타_급수}}
* for $g\in \mathbb{N}$ and a positice definite lattice $\Lambda$ of rank $n$, we will define $\Theta_\Lambda^{(g)}$
+
* for <math>g\in \mathbb{N}</math> and <math>\Lambda</math> of rank <math>n</math>, we will define the Siegel theta series <math>\Theta_\Lambda^{(g)}</math> of degree (or genus) <math>g</math> (<math>g</math> comes from the genus of Riemann surfaces)
* $g=1$ case recovers $\Theta_\Lambda^{(1)}=\Theta_\Lambda$
+
* <math>g=1</math> case recovers <math>\Theta_\Lambda^{(1)}=\Theta_\Lambda</math>
 
;def (half-integral matrix)
 
;def (half-integral matrix)
A symmetric matrix $N\in \operatorname{GL}(g,\mathbb{Q})$ is called half-integral if $2N$ has integral entries with even integers on the diagonal
+
A symmetric matrix <math>N\in \operatorname{GL}(g,\mathbb{Q})</math> is called half-integral if <math>2N</math> has integral entries with even integers on the diagonal
 
===representations of a quadratic form by another quadratic form===
 
===representations of a quadratic form by another quadratic form===
* $g\in \mathbb{N}$, ($g$ comes from the genus of Riemann surfaces)
+
* we want to find the number of representations of a quadratic form by the quadratic form of <math>\Lambda</math>
* $\underline{\zeta}$ :  $g\times n$ integer matrix
+
* let <math>g\leq n</math>
* $\underline{x}$ : $g\times n$ matrix whose row is an element of $\Lambda$
+
* <math>\underline{x}</math> : <math>g\times n</math> matrix whose row is an element of <math>\Lambda</math>
* a given $\underline{x}$ can be written as $\underline{x}=\underline{\zeta}M$ for some $\underline{\zeta}$
+
* for each half-integral <math>g\times g</math> matrix <math>\underline{N}=(N_{ij})</math>, let <math>a(\underline{N})</math> be the number of elements in <math>\{\underline{x}=(x_i)\in\Lambda^{g}| x_i\cdot x_j=2N_{ij}\}</math>
* for each half-integral $g\times g$ matrix $\underline{N}=(N_{ij})$, let $a(\underline{N})\in\mathbb{Z}$ be the number of solutions $\underline{\zeta}$ of
+
* a given <math>\underline{x}</math> can be written as <math>\underline{x}=\underline{\zeta}M</math> for some <math>\underline{\zeta}</math>, a <math>g\times n</math> integer matrix
$$
+
* <math>a(\underline{N})</math> is the number of elements in <math>\{\underline{\zeta}\in\mathbb{Z}^{g,n}|\underline{\zeta} A \underline{\zeta}^t =2\underline{N}\}</math>
\underline{\zeta} A \underline{\zeta}^t =2\underline{N},
 
$$
 
* then $2N_{i,j}$ is the inner product of two rows $x_i,x_j\in\Lambda$ of $\underline{x}$
 
* thus $a(\underline{N})$ is the number of solutions $\underline{x}=(x_i)$ of $x_i\cdot x_j=2N_{ij}$
 
* or, $a(\underline{N})$ denotes the number of representations of $2\underline{N}$ by the quadratic form of $\Lambda$
 
  
 
===definition===
 
===definition===
* Let $\tau=(\tau_{ij})$ be a symmetric $g\times g$ matrix
+
* Let <math>\tau=(\tau_{ij})</math> be a symmetric <math>g\times g</math> matrix
* for $\Lambda$, the theta series $\Theta_\Lambda^{(g)}$ of genus $g$ is defined by  
+
* for <math>\Lambda</math>, the theta series <math>\Theta_\Lambda^{(g)}</math> of genus <math>g</math> is defined by  
$$
+
:<math>
 
\begin{align}
 
\begin{align}
 
\Theta_\Lambda^{(g)}(\tau)&=\sum_{\underline{x}\in\Lambda^{g}}e^{\pi i\operatorname{Tr}(\underline{x}\cdot \underline{x} \tau)}\\
 
\Theta_\Lambda^{(g)}(\tau)&=\sum_{\underline{x}\in\Lambda^{g}}e^{\pi i\operatorname{Tr}(\underline{x}\cdot \underline{x} \tau)}\\
122번째 줄: 117번째 줄:
 
&=\sum_{\underline{N}:\text{h.i.}} a(\underline{N})e^{2\pi i\operatorname{Tr}(\underline{N}\tau)}
 
&=\sum_{\underline{N}:\text{h.i.}} a(\underline{N})e^{2\pi i\operatorname{Tr}(\underline{N}\tau)}
 
\end{align} \label{tg}
 
\end{align} \label{tg}
$$
+
</math>
  
 
===note on trace===
 
===note on trace===
 
* in the last equality, we used the following property of trace
 
* in the last equality, we used the following property of trace
* for two $n\times n$ matrices $A=(a_{ij})$ and $B=(b_{ij})$,
+
* for two <math>n\times n</math> matrices <math>A=(a_{ij})</math> and <math>B=(b_{ij})</math>,
$$
+
:<math>
 
\operatorname{tr}(AB)=\sum_{i,j=1}^{n}a_{ij}b_{ji}
 
\operatorname{tr}(AB)=\sum_{i,j=1}^{n}a_{ij}b_{ji}
$$
+
</math>
* if $A$ and $B$ are symmetric,
+
* if <math>A</math> and <math>B</math> are symmetric,
$$
+
:<math>
 
\operatorname{tr}(AB)=\sum_{i,j=1}^{n}a_{ij}b_{ij}
 
\operatorname{tr}(AB)=\sum_{i,j=1}^{n}a_{ij}b_{ij}
$$
+
</math>
* the series \ref{tg} converges absolutely if $\tau$ is an element of
+
* the series \ref{tg} converges absolutely if <math>\tau</math> is an element of
$$
+
:<math>
 
\mathcal{H}_g:=\left\{\tau \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{  positive definite} \right\}
 
\mathcal{H}_g:=\left\{\tau \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{  positive definite} \right\}
$$
+
</math>
* it is a holomorphic function on $\mathcal{H}_g$
+
* it is a holomorphic function on <math>\mathcal{H}_g</math>
  
 
==Siegel theta functions of even unimodular lattices==
 
==Siegel theta functions of even unimodular lattices==
 
===8차원===
 
===8차원===
* $g=2$ case
+
* <math>g=2</math> case
* Fourier coefficient of $\Theta_{E_8}^{(2)}$
+
* Fourier coefficient of <math>\Theta_{E_8}^{(2)}</math>
* $N = \Bigl( {a \atop b/2} \thinspace {b/2 \atop c} \Bigr) \in
+
* <math>N = \Bigl( {a \atop b/2} \thinspace {b/2 \atop c} \Bigr) \in
M_2({1 \over 2}\Z)$, positive semi-definite, half-integral matrix
+
\operatorname{Mat}_{2\times 2}({1 \over 2}\Z)</math>, positive semi-definite, half-integral matrix
* for $\tau=\left(
+
* for <math>\tau=\left(
 
\begin{array}{cc}
 
\begin{array}{cc}
 
  \tau _1 & z \\
 
  \tau _1 & z \\
 
  z & \tau _2
 
  z & \tau _2
 
\end{array}
 
\end{array}
\right)$,
+
\right)</math>,
$$
+
:<math>
 
\operatorname{Tr}(N\tau)=a \tau _1+b z+c \tau _2
 
\operatorname{Tr}(N\tau)=a \tau _1+b z+c \tau _2
$$
+
</math>
* by setting $q_i=e^{2\pi i \tau_i}$, $\zeta=e^{2\pi i z}$, we get
+
* by setting <math>q_i=e^{2\pi i \tau_i}</math>, <math>\zeta=e^{2\pi i z}</math>, we get
$$\exp(2\pi i \operatorname{Tr}(N\tau))=q_1^a\zeta^bq_2^c$$
+
:<math>\exp(2\pi i \operatorname{Tr}(N\tau))=q_1^a\zeta^bq_2^c</math>
* let us compute $a(N)$ for $N=
+
* let us compute <math>a(N)</math> for <math>N=
 
\left(
 
\left(
 
\begin{array}{cc}
 
\begin{array}{cc}
173번째 줄: 168번째 줄:
 
  0 & 1
 
  0 & 1
 
\end{array}
 
\end{array}
\right)$.
+
\right)</math>.
* for the third one, we may use the following properties of the $E_8$ root system $\Phi$
+
* for the third one, we may use the following property of the <math>E_8</math> root system <math>\Phi</math>
# Weyl group acts on $\Phi$ transitively
+
# for a given <math>v\in \Phi</math>, there exist 126 elements in <math>\Phi</math> orthogonal to <math>v</math>
# for a given $v\in \Phi$, there exist 126 elements in $\Phi$ orthogonal to $v$
+
# 240*126=30240
 
* table
 
* table
$$
+
:<math>
 
\begin{array}{c|c|c|c|c|c|c|c|c|c|c}
 
\begin{array}{c|c|c|c|c|c|c|c|c|c|c}
 
  N & \left(
 
  N & \left(
236번째 줄: 231번째 줄:
 
  \exp(2\pi i \operatorname{Tr}(N\tau)) & 1 & q_1 & q_2 & q_1^2 & q_2^2 & \frac{q_1 q_2}{\zeta^2} & \frac{q_1 q_2}{\zeta} & q_1 q_2 & q_1 q_2 \zeta & q_1 q_2 \zeta^2
 
  \exp(2\pi i \operatorname{Tr}(N\tau)) & 1 & q_1 & q_2 & q_1^2 & q_2^2 & \frac{q_1 q_2}{\zeta^2} & \frac{q_1 q_2}{\zeta} & q_1 q_2 & q_1 q_2 \zeta & q_1 q_2 \zeta^2
 
\end{array}
 
\end{array}
$$
+
</math>
  
 
===16차원===
 
===16차원===
* $E_8\oplus E_8$ and $D_{16}^{+}$ lattice
+
* <math>E_8\oplus E_8</math> and <math>D_{16}^{+}</math> lattice
* for $g=1,2,3$, $\Theta_{E_8\oplus E_8}^{(g)}=\Theta_{D_{16}^{+}}^{(g)}$
+
* for <math>g=1,2,3</math>, <math>\Theta_{E_8\oplus E_8}^{(g)}=\Theta_{D_{16}^{+}}^{(g)}</math>
* $\Theta^{(4)}_{E_8\oplus E_8}\neq \Theta^{(4)}_{D_{16}^{+}}$
+
* <math>\Theta^{(4)}_{E_8\oplus E_8}\neq \Theta^{(4)}_{D_{16}^{+}}</math>
* $\Theta^{(4)}_{E_8\oplus E_8}-\Theta^{(4)}_{D_{16}^{+}}$, Siegel cusp form of weight 8 called the Schottky form
+
* <math>\Theta^{(4)}_{E_8\oplus E_8}-\Theta^{(4)}_{D_{16}^{+}}</math>, Siegel cusp form of weight 8 called the Schottky form
  
 
===24차원===
 
===24차원===
* for 24 Niemeier lattices, the associated theta series are linearly dependent in degree $\leq$ 11 and linearly independent in degree 12 (Borcherds-Freitag-Weissauer, 1998)
+
* for 24 Niemeier lattices, the associated theta series are linearly dependent in degree <math>\leq</math> 11 and linearly independent in degree 12 (Borcherds-Freitag-Weissauer, 1998)
  
 
;thm
 
;thm
For a positive definite even unimodular lattice $\Lambda$, $\theta^{(g)}_{\Lambda}$ is a Siegel modular form of weight $\frac{n}{2}$ w.r.t. $\Gamma_g$
+
For a positive definite even unimodular lattice <math>\Lambda</math>, <math>\theta^{(g)}_{\Lambda}</math> is a Siegel modular form of weight <math>\frac{n}{2}</math> w.r.t. <math>\Gamma_g</math>
  
 
==symplectic group==
 
==symplectic group==
* symplectic group $\Gamma_g:=\operatorname{Sp}(2g,\Z)=\{M\in \operatorname{GL}(2g,\mathbb{Z})|M^T J_{g} M = J_{g}\}$
+
* symplectic group <math>\Gamma_g:=\operatorname{Sp}(2g,\Z)=\{M\in \operatorname{GL}(2g,\mathbb{Z})|M^T J_{g} M = J_{g}\}</math>
* 여기서 $J_{g}$는 다음과 같이 주어진 $2g\times 2g$ 행렬
+
where
$$
+
:<math>
 
J_{g} =\begin{pmatrix}0 & I_g \\-I_g & 0 \\\end{pmatrix}
 
J_{g} =\begin{pmatrix}0 & I_g \\-I_g & 0 \\\end{pmatrix}
$$
+
</math>
 +
* <math>2g\times 2g</math> matrix
 
* one can check that for  
 
* one can check that for  
$$M=\begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_g,$$
+
:<math>M=\begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_g,</math>
$$
+
:<math>
 
\begin{align}
 
\begin{align}
 
A^tC=C^tA \\
 
A^tC=C^tA \\
264번째 줄: 260번째 줄:
 
A^tD-C^tB= I_g
 
A^tD-C^tB= I_g
 
\end{align}
 
\end{align}
$$
+
</math>
* the lattice $\mathbb{Z}^{2g}$ of rank $2g$ with basis $a_1,\cdots, a_g,b_1\cdots,b_g$ with the symplectic form
+
* the lattice <math>\mathbb{Z}^{2g}</math> of rank <math>2g</math> with basis <math>a_1,\cdots, a_g,b_1\cdots,b_g</math> with the symplectic form
$$
+
:<math>
 
\langle a_i,b_j \rangle = \begin{cases} 1, & \text{if }i=j\\ 0, & \text{if }i\neq j \\ \end{cases}
 
\langle a_i,b_j \rangle = \begin{cases} 1, & \text{if }i=j\\ 0, & \text{if }i\neq j \\ \end{cases}
$$
+
</math>
* then $\Gamma_g=\operatorname{Aut}(\mathbb{Z}^{2g},\langle,\rangle)$
+
* then <math>\Gamma_g=\operatorname{Aut}(\mathbb{Z}^{2g},\langle,\rangle)</math>
 
* note that
 
* note that
$$
+
:<math>
 
\begin{pmatrix} I_g & S \\ 0& I_g  \\\end{pmatrix} \in \Gamma_g
 
\begin{pmatrix} I_g & S \\ 0& I_g  \\\end{pmatrix} \in \Gamma_g
$$
+
</math>
for any symmetric integral matrix $S$
+
for any symmetric integral matrix <math>S</math>
  
 
==Siegel upper-half space==
 
==Siegel upper-half space==
* $\mathcal{H}_g$
+
* <math>\mathcal{H}_g</math>
$$
+
:<math>
 
\mathcal{H}_g=\left\{\tau \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{  positive definite} \right\}
 
\mathcal{H}_g=\left\{\tau \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{  positive definite} \right\}
$$
+
</math>
* there is an action of $\Gamma_g$ on $\mathcal{H}_g$ by
+
* there is an action of <math>\Gamma_g</math> on <math>\mathcal{H}_g</math> by
$$
+
:<math>
\tau\mapsto (A\tau +B)(C\tau + D)^{-1}
+
\tau\mapsto \gamma(\tau)=(A\tau +B)(C\tau + D)^{-1}
$$
+
</math>
 
+
* we need to check that <math>C\tau + D</math> Is invertible and <math>\Im{\gamma(\tau)}>0 </math>
  
 
===Riemann bilinear relation===
 
===Riemann bilinear relation===
 
* {{수학노트|url=리만_곡면의_주기_행렬과_겹선형_관계_(bilinear_relation)}}
 
* {{수학노트|url=리만_곡면의_주기_행렬과_겹선형_관계_(bilinear_relation)}}
* $X$ : compact Riemann surface of genus $g$
+
* <math>X</math> : compact Riemann surface of genus <math>g</math>
* 다음을 만족하는 <math>H_1(X, \mathbb{Z}) \cong \mathbb{Z}^{2g}</math>의 기저, 2g 개의 닫힌 곡선 <math>a_1, \dots, a_g,b_1,\cdots,b_g</math>이 존재 (canonical homology basis) with the intersection pairing
+
* there exists a basis <math>a_1, \dots, a_g,b_1,\cdots,b_g</math> of <math>H_1(X, \mathbb{Z}) \cong \mathbb{Z}^{2g}</math> with the intersection pairing (canonical homology basis)
$$
+
:<math>
 
\langle a_i,b_j \rangle = \begin{cases} 1, & \text{if }i=j\\ 0, & \text{if }i\neq j \\ \end{cases}
 
\langle a_i,b_j \rangle = \begin{cases} 1, & \text{if }i=j\\ 0, & \text{if }i\neq j \\ \end{cases}
$$
+
</math>
* 다음을 만족하는 <math>H^0(X, K) \cong \mathbb{C}^g</math>의 기저, holomorphic 1-form $\omega_1,\cdots,\omega_{g}$가 존재
+
* there exists a basis of the space of holomorphic 1-form, <math>\omega_1,\cdots,\omega_{g}</math> such that
$$
+
:<math>
 
\int_{a_i}\omega_j=\delta_{ij}
 
\int_{a_i}\omega_j=\delta_{ij}
$$
+
</math>
* if we set $\tau_{i,j}=\int_{b_i}\omega_j$, then $\tau=(\tau_{i,j})_{1\leq i,j\leq g}$ satisfies the following properties
+
* if we set <math>\tau_{i,j}=\int_{b_i}\omega_j</math>, then <math>\tau=(\tau_{i,j})_{1\leq i,j\leq g}</math> satisfies the following properties
# $\tau^{\mathrm{T}}=\tau$
+
# <math>\tau^{\mathrm{T}}=\tau</math>
# $\textrm{Im}(\tau)$ is positive definite
+
# <math>\textrm{Im}(\tau)</math> is positive definite
 
* this is called the Riemann bilinear relation
 
* this is called the Riemann bilinear relation
* $\tau\in \mathcal{H}_g$ and and it is called a period matrix of $X$
+
* <math>\tau\in \mathcal{H}_g</math> and and it is called a period matrix of <math>X</math>
* $\mathcal{A}_g=\mathcal{H}_g/\Gamma_g$ : moduli space of principally polarized abelian varieties
+
* <math>\mathcal{A}_g=\mathcal{H}_g/\Gamma_g</math> : moduli space of principally polarized abelian varieties
  
 
==Siegel modular forms==
 
==Siegel modular forms==
 
* {{수학노트|url=지겔_모듈라_형식}}
 
* {{수학노트|url=지겔_모듈라_형식}}
 
;definition
 
;definition
A holomorphic function $f:\mathcal{H}_g\to \mathbb{C}$ is a Siegel modular form of weight k and genus(or degree) $g$ if
+
A holomorphic function <math>f:\mathcal{H}_g\to \mathbb{C}</math> is a Siegel modular form of weight k and genus(or degree) <math>g</math> if
$$
+
:<math>
 
f \left( (A\tau +B)(C\tau + D)^{-1}\right) = \det(C\tau +D)^{k} f(\tau),\, \forall \begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_g
 
f \left( (A\tau +B)(C\tau + D)^{-1}\right) = \det(C\tau +D)^{k} f(\tau),\, \forall \begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_g
$$
+
</math>
and it must be holomorphic at the cusp if $g=1$
+
and it must be holomorphic at the cusp if <math>g=1</math>
* denote the vector space of such functions as $M_k(\Gamma_g)$
+
* denote the vector space of such functions as <math>M_k(\Gamma_g)</math>
  
 
===Fourier expansion===
 
===Fourier expansion===
 
* note that
 
* note that
$$
+
:<math>
 
\begin{pmatrix} I_g & S \\ 0& I_g  \\\end{pmatrix}\cdot \tau = \tau+S  
 
\begin{pmatrix} I_g & S \\ 0& I_g  \\\end{pmatrix}\cdot \tau = \tau+S  
$$
+
</math>
* $f\in M_k(\Gamma_g)$ satisfies $f(\tau+S)=f(\tau)$ for any symmetric integral $S$
+
* <math>f\in M_k(\Gamma_g)</math> satisfies <math>f(\tau+S)=f(\tau)</math> for any symmetric integral <math>S</math>
 
* we get the following expansion
 
* we get the following expansion
$$
+
:<math>
f(q_{11},\cdots, q_{gg})=\sum_{n_{11},\cdots, n_{gg}\in \mathbb{Z}}a(n_{11},\cdots, n_{gg})q_{11}^{n_{11}}\cdots q_{gg}^{n_{gg}} \label{fou1}
+
f(q_{11},\cdots, q_{gg})=\sum_{n_{11},\cdots, n_{ij},\cdots, n_{gg}\in \mathbb{Z}}a(n_{11},\cdots, n_{gg})q_{11}^{n_{11}}\cdots q_{gg}^{n_{gg}} \label{fou1}
$$
+
</math>
where $q_{ij}=e^{2\pi i \tau_{ij}}$, $i\leq j$
+
where <math>q_{ij}=e^{2\pi i \tau_{ij}}</math>, <math>i\leq j</math>
* define a symmetric matrix $N=(N_{ij})_{1\leq i,j\leq g}$ as
+
* define a symmetric matrix <math>N=(N_{ij})_{1\leq i,j\leq g}</math> as
$$
+
:<math>
 
N_{ij}=
 
N_{ij}=
 
\begin{cases}
 
\begin{cases}
  n_{ii}, & \text{if $i=j$}\\  
+
  n_{ii}, & \text{if </math>i=j<math>}\\  
  n_{ij}/2, & \text{if $i\neq j$}
+
  n_{ij}/2, & \text{if </math>i\neq j<math>}
 
\end{cases}
 
\end{cases}
$$
+
</math>
* $\operatorname{Tr}(N\tau)=\sum_{i=1}^{g}N_{ii}\tau_{ii}+2\sum_{1\leq i<j\leq g}N_{ij}\tau_{ij}$
+
* <math>\operatorname{Tr}(N\tau)=\sum_{i=1}^{g}N_{ii}\tau_{ii}+2\sum_{1\leq i<j\leq g}N_{ij}\tau_{ij}</math>
* $\exp(2\pi i \operatorname{Tr}(N\tau))=q_{11}^{n_{11}}\cdots q_{gg}^{n_{gg}}$
+
* <math>\exp(2\pi i \operatorname{Tr}(N\tau))=q_{11}^{n_{11}}\cdots q_{gg}^{n_{gg}}</math>
 
* \ref{fou1} can be rewritten as
 
* \ref{fou1} can be rewritten as
$$f(\tau)=\sum_{N}a(N)\exp\left(2\pi i \operatorname{Tr}(N\tau)\right)$$
+
:<math>f(\tau)=\sum_{N}a(N)\exp\left(2\pi i \operatorname{Tr}(N\tau)\right)</math>
where the summation is over $N=(N_{ij})\in \operatorname{Mat}_g(\frac{1}{2}\mathbb{Z})$ half-integral matrix
+
where the summation is over <math>N=(N_{ij})\in \operatorname{Mat}_g(\frac{1}{2}\mathbb{Z})</math> half-integral matrix
 
;Koecher Principle
 
;Koecher Principle
For a Siegel modular form $f\in M_k(\Gamma_g)$, if $N$ is not a positive semi-definite matrix, then $a(N)=0$.
+
For a Siegel modular form <math>f\in M_k(\Gamma_g)</math>, if <math>N</math> is not a positive semi-definite matrix, then <math>a(N)=0</math>. (this is why holomorphicity at the cusp is not necessary if <math>g>1</math>)
  
 
==지겔 모듈라 형식의 예==
 
==지겔 모듈라 형식의 예==
 
* [[격자의 지겔 세타 급수]]
 
* [[격자의 지겔 세타 급수]]
 
* {{수학노트|url=지겔-아이젠슈타인_급수}}
 
* {{수학노트|url=지겔-아이젠슈타인_급수}}
$$
+
:<math>
 
E_{k}^{(g)}(\tau) = \sum_{(C,D)} \frac{1}{\det(C\tau +D)^{k}}
 
E_{k}^{(g)}(\tau) = \sum_{(C,D)} \frac{1}{\det(C\tau +D)^{k}}
$$
+
</math>
 
where the summation is over all
 
where the summation is over all
$$
+
:<math>
 
\begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_{g,0}\backslash \Gamma_{g}
 
\begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_{g,0}\backslash \Gamma_{g}
$$
+
</math>
 
and  
 
and  
$$
+
:<math>
 
\Gamma_{g,0}=\{\begin{pmatrix}A & B \\ 0 & D \\\end{pmatrix}\in \Gamma_{g}\}
 
\Gamma_{g,0}=\{\begin{pmatrix}A & B \\ 0 & D \\\end{pmatrix}\in \Gamma_{g}\}
$$
+
</math>
(the summation extends over all classes of coprime symmetric pairs, i. e. over all inequivalent bottom rows of elements of $\Gamma_g$ with respect to left multiplications by unimodular integer matrices of degree $g$. In other words, the sum is over a full set of representatives for the cosets $\operatorname{GL}(g,\mathbb{Z})\backslash \Gamma_{g}$)
+
(the summation extends over all classes of coprime symmetric pairs, i. e. over all inequivalent bottom rows of elements of <math>\Gamma_g</math> with respect to left multiplications by unimodular integer matrices of degree <math>g</math>. In other words, the sum is over a full set of representatives for the cosets <math>\operatorname{GL}(g,\mathbb{Z})\backslash \Gamma_{g}</math>)
 +
* [[Fourier coefficients of Siegel-Eisenstein series]]
  
 
==Siegel-Weil formula==
 
==Siegel-Weil formula==
362번째 줄: 359번째 줄:
 
* {{수학노트|url=지겔-베유_공식}}
 
* {{수학노트|url=지겔-베유_공식}}
 
;thm
 
;thm
For a positive definite even unimodular lattice $L$,
+
For a positive definite even unimodular lattice <math>L</math>,
$$\left( \sum_{M\in {\rm gen}(L)}\frac{\Theta_M^{(g)}(Z)}{|{\rm Aut}(M)|}\right)\,\cdot\,
+
:<math>\left( \sum_{M\in {\rm gen}(L)}\frac{\Theta_M^{(g)}(Z)}{|{\rm Aut}(M)|}\right)\,\cdot\,
 
\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1}=
 
\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1}=
E^{(g)}_{k}(Z),$$
+
E^{(g)}_{k}(Z),</math>
  
Moreover, the Fourier coefficients $a_{E}(N)$ of $E$ can be expressed as an infinite product of local densities
+
Moreover, the Fourier coefficients <math>a_{E}(N)</math> of <math>E</math> can be expressed as an infinite product of [[Local density of quadratic form|local densities]]
$$
+
:<math>
 
a_{E}(N)=\prod_{p:\text{primes}}\beta_{L,p}(N) \label{lp}
 
a_{E}(N)=\prod_{p:\text{primes}}\beta_{L,p}(N) \label{lp}
$$
+
</math>
===mass formulas===
+
===mass formula===
* for a half-integral $N$,
+
* for a half-integral <math>N</math>,
$$
+
:<math>
 
a_{E}(N)=\left( \sum_{M\in {\rm gen}(L)}\frac{r_M(N)}{|{\rm Aut}(M)|}\right)\,\cdot\,
 
a_{E}(N)=\left( \sum_{M\in {\rm gen}(L)}\frac{r_M(N)}{|{\rm Aut}(M)|}\right)\,\cdot\,
 
\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1}
 
\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1}
$$
+
</math>
where $\Theta_M^{(g)}(Z)=\sum_{N}r_M(N)\exp\left(2\pi i \operatorname{Tr}(N\tau)\right)$
+
where <math>\Theta_M^{(g)}(Z)=\sum_{N}r_M(N)\exp\left(2\pi i \operatorname{Tr}(N\tau)\right)</math>
* if $2N$ is a Gram matrix of $L$, then we obtain
+
* if <math>2N</math> is a Gram matrix of <math>L</math>, then we obtain
$$
+
:<math>
 
a_{E}(N)=\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1}
 
a_{E}(N)=\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1}
$$
+
</math>
 
as  
 
as  
$$
+
:<math>
 
r_M(N) = \begin{cases} |\operatorname{Aut}(L)|, & \text{if }L\sim M \\ 0, & \text{if }L\nsim M \\ \end{cases}
 
r_M(N) = \begin{cases} |\operatorname{Aut}(L)|, & \text{if }L\sim M \\ 0, & \text{if }L\nsim M \\ \end{cases}
$$
+
</math>
 
* then we can express
 
* then we can express
$$
+
:<math>
 
a_{E}(N)=\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1}
 
a_{E}(N)=\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1}
$$
+
</math>
 
in terms of local densities \ref{lp}, which gives the Smith-Minkowski-Siegel mass formula
 
in terms of local densities \ref{lp}, which gives the Smith-Minkowski-Siegel mass formula
  
  
 
[[분류:talks and lecture notes]]
 
[[분류:talks and lecture notes]]
 +
[[분류:theta]]
 +
[[분류:migrate]]

2020년 11월 13일 (금) 03:18 기준 최신판

overview

  • Siegel theta series
  • Siegel modular forms
  • Siegel-Weil formula

modular forms

  • \(\mathbb{H}=\{\tau\in \mathbb{C}|\Im \tau>0\}\)
  • modular group \(\Gamma=SL(2, \mathbb Z) = \left \{ \left. \left ( \begin{array}{cc}a & b \\ c & d \end{array} \right )\right| a, b, c, d \in \mathbb Z,\ ad-bc = 1 \right \}\)
  • \(\operatorname{PSL}(2,\mathbb{Z})=\operatorname{SL}(2,\mathbb{Z})/\{\pm I\}\) acts on \(\mathbb{H}\) by

\[\tau\mapsto\frac{a\tau+b}{c\tau+d}\] for \(\left ( \begin{array}{cc}a & b \\ c & d \end{array} \right )\in \operatorname{SL}(2,\mathbb{Z})\)

def

A holomorphic function \(f:\mathbb{H}\to \mathbb{C}\) is a modular form of weight \(k\) (w.r.t. \(SL(2, \mathbb Z)\)) if

  1. \(f \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{k} f(\tau)\)
  2. \(f\) is "holomorphic at the cusp", i.e. it has a Fourier expansion of the following form

\[ f(\tau)=\sum_{n=0}^{\infty}a(n)e^{2\pi i n \tau} \]

Eisenstein series

  • for an integer \(k\geq 2\), define the Eisenstein series by

\[ E_{2k}(\tau) : =\frac{1}{2}\sum_{ \substack{ (c,d)\in \mathbb{Z}^2\\ (c,d)=1 }} \frac{1}{(c\tau+d )^{2k}} \]

  • Fourier expansion

\[E_{2k}(\tau):= 1+\frac {2}{\zeta(1-2k)}\left(\sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^{n} \right)=1-\frac {4k}{B_{2k}}\left(\sum_{n=1}^{\infty} \sigma_{2k-1}(n)q^{n} \right)\] where \(\zeta\) denotes the Riemann zeta function, \(B_k\) Bernoulli number and \(\sigma_r(n)=\sum_{d|n}d^r\)

  • this is a modular form of weight \(2k\)
  • for example

\[E_4(\tau)= 1+ 240\sum_{n=1}^\infty \sigma_3(n) q^{n}=1 + 240 q + 2160 q^2 + \cdots \] \[E_6(\tau)=1- 504\sum_{n=1}^\infty \sigma_5(n) q^{n}=1 - 504 q - 16632 q^2 - \cdots \]

the space of modular forms

thm

Let \(M_k\) be the space of modular forms of weight \(k\) and \(M:=\bigoplus_{k\in \mathbb{Z}_{\geq 0}} M_k\). We have \[M=\mathbb{C}[E_4,E_6]\]

  • dimension generating function

\[ \sum_{k=0}^{\infty}\dim M_k x^k=\frac{1}{\left(1-x^4\right)\left(1-x^{6}\right)}=1+x^4+x^6+x^8+x^{10}+2 x^{12}+x^{14}+2 x^{16}+2 x^{18}+2 x^{20}+\cdots \]

theta functions

notation

  • \(\Lambda\subset \mathbb{R}^n\) : integral lattice, i.e. a free abelian group with a positive definite symmetric bilinear form, i.e. \(x\cdot y\in \mathbb{Z}\) for all \(x,y\in \Lambda\)
  • we will assume that \(\Lambda\) is even, i.e., \(x\cdot x\in 2\mathbb{Z}\)
  • for a basis of \(\Lambda\), fix \(M\), \(n\times n\) matrix whose each row is a basis element
  • \(A:=M^tM\), Gram matrix of \(\Lambda\)

definition

  • old problem in number theory : find the number of representations of a given integer by the quadratic form associated to \(\Lambda\)
  • for a given integer \(N\), determine the size of the set \(\{x\in\Lambda|x\cdot x=2N\}\) or \(\{\zeta\in \mathbb{Z}^n|\zeta A \zeta^{t} =2N\}\)
  • denote it by \(a(N)\)
  • theta function of \(\Lambda\) is a holomorphic function on \(\mathbb{H}\) given by

\[ \Theta_\Lambda(\tau)=\sum_{x\in\Lambda}q^{\frac{x\cdot x}{2}}=\sum_{N=0}^\infty a(N)q^{N}, \] where \(q=e^{2\pi i \tau}\)

on theta functions of positive definite even unimodular lattices

8차원

  • \(\dim M_4=1\) and thus

\[\theta_{E_8}(\tau)=E_4(\tau)=1+240 q+2160 q^2+6720 q^3+17520 q^4+30240 q^5+\cdots\]

16차원

  • \(\dim M_8=1\), \(E_8=E_4^2\) and

\[ \theta_{E_8\oplus E_8}(\tau)=\theta_{D_{16}^{+}}(\tau)=E_8(\tau)\\ E_8(\tau)=1+480 q+61920 q^2+1050240 q^3+7926240 q^4+\cdots \]

24차원

  • 틀:수학노트의 세타함수
  • modular form of weight 12
  • \(M_{12}=\mathbb{C}\langle E_4^3,E_6^2\rangle\)
  • let \({\rm gen}(L)\) be the set of all isomorphim classes of 24-dimensional positive definite even unimodular lattices
  • to compute \(\theta_{\Lambda}\), find \(a,b\) such that \(\theta_{\Lambda}=a E_4^3+ bE_6^2\)
  • we can easily determine \(a,b\) once we know the number \(r\) of roots in \(\Lambda\) (the coefficient of \(q\) in \(\theta_{\Lambda}\)) by solving

\[ \left\{ \begin{array}{c} a+b=1 \\ 720 a - 1008 b=r \end{array} \right. \]

  • weighted average

\[\left(\sum_{\Lambda\in {\rm gen}(L)}\frac{\Theta_{\Lambda}(\tau)}{|{\rm Aut}(\Lambda)|}\right)\,\cdot\, \left(\sum_{\Lambda\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(\Lambda)|}\right)^{-1}=?\]

  • we get

\[\left( \sum_{\Lambda\in {\rm gen}(L)}\frac{\Theta_{\Lambda}(\tau)}{|{\rm Aut}(\Lambda)|}\right)\,\cdot\, \left(\sum_{\Lambda\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(\Lambda)|}\right)^{-1}=E_{12}(\tau)\] where \(E_{12}\) is the Eisenstein series \[ E_{12}(\tau)=1+\frac{65520 q}{691}+\frac{134250480 q^2}{691}+\frac{11606736960 q^3}{691}+\frac{274945048560 q^4}{691}+\frac{3199218815520 q^5}{691}+\cdots \]

Siegel theta series

  • 틀:수학노트
  • for \(g\in \mathbb{N}\) and \(\Lambda\) of rank \(n\), we will define the Siegel theta series \(\Theta_\Lambda^{(g)}\) of degree (or genus) \(g\) (\(g\) comes from the genus of Riemann surfaces)
  • \(g=1\) case recovers \(\Theta_\Lambda^{(1)}=\Theta_\Lambda\)
def (half-integral matrix)

A symmetric matrix \(N\in \operatorname{GL}(g,\mathbb{Q})\) is called half-integral if \(2N\) has integral entries with even integers on the diagonal

representations of a quadratic form by another quadratic form

  • we want to find the number of representations of a quadratic form by the quadratic form of \(\Lambda\)
  • let \(g\leq n\)
  • \(\underline{x}\) \[g\times n\] matrix whose row is an element of \(\Lambda\)
  • for each half-integral \(g\times g\) matrix \(\underline{N}=(N_{ij})\), let \(a(\underline{N})\) be the number of elements in \(\{\underline{x}=(x_i)\in\Lambda^{g}| x_i\cdot x_j=2N_{ij}\}\)
  • a given \(\underline{x}\) can be written as \(\underline{x}=\underline{\zeta}M\) for some \(\underline{\zeta}\), a \(g\times n\) integer matrix
  • \(a(\underline{N})\) is the number of elements in \(\{\underline{\zeta}\in\mathbb{Z}^{g,n}|\underline{\zeta} A \underline{\zeta}^t =2\underline{N}\}\)

definition

  • Let \(\tau=(\tau_{ij})\) be a symmetric \(g\times g\) matrix
  • for \(\Lambda\), the theta series \(\Theta_\Lambda^{(g)}\) of genus \(g\) is defined by

\[ \begin{align} \Theta_\Lambda^{(g)}(\tau)&=\sum_{\underline{x}\in\Lambda^{g}}e^{\pi i\operatorname{Tr}(\underline{x}\cdot \underline{x} \tau)}\\ &=\sum_{\underline{\zeta}\in\mathbb{Z}^{g,n}}e^{\pi i\operatorname{Tr}(\underline{\zeta} A \underline{\zeta}^{t}\tau)}\\ &=\sum_{\underline{N}:\text{h.i.}} a(\underline{N})e^{2\pi i\operatorname{Tr}(\underline{N}\tau)} \end{align} \label{tg} \]

note on trace

  • in the last equality, we used the following property of trace
  • for two \(n\times n\) matrices \(A=(a_{ij})\) and \(B=(b_{ij})\),

\[ \operatorname{tr}(AB)=\sum_{i,j=1}^{n}a_{ij}b_{ji} \]

  • if \(A\) and \(B\) are symmetric,

\[ \operatorname{tr}(AB)=\sum_{i,j=1}^{n}a_{ij}b_{ij} \]

  • the series \ref{tg} converges absolutely if \(\tau\) is an element of

\[ \mathcal{H}_g:=\left\{\tau \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{ positive definite} \right\} \]

  • it is a holomorphic function on \(\mathcal{H}_g\)

Siegel theta functions of even unimodular lattices

8차원

  • \(g=2\) case
  • Fourier coefficient of \(\Theta_{E_8}^{(2)}\)
  • \(N = \Bigl( {a \atop b/2} \thinspace {b/2 \atop c} \Bigr) \in \operatorname{Mat}_{2\times 2}({1 \over 2}\Z)\), positive semi-definite, half-integral matrix
  • for \(\tau=\left( \begin{array}{cc} \tau _1 & z \\ z & \tau _2 \end{array} \right)\),

\[ \operatorname{Tr}(N\tau)=a \tau _1+b z+c \tau _2 \]

  • by setting \(q_i=e^{2\pi i \tau_i}\), \(\zeta=e^{2\pi i z}\), we get

\[\exp(2\pi i \operatorname{Tr}(N\tau))=q_1^a\zeta^bq_2^c\]

  • let us compute \(a(N)\) for \(N= \left( \begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right), \left( \begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)\).
  • for the third one, we may use the following property of the \(E_8\) root system \(\Phi\)
  1. for a given \(v\in \Phi\), there exist 126 elements in \(\Phi\) orthogonal to \(v\)
  2. 240*126=30240
  • table

\[ \begin{array}{c|c|c|c|c|c|c|c|c|c|c} N & \left( \begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right) & \left( \begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right) & \left( \begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) & \left( \begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array} \right) & \left( \begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array} \right) & \left( \begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & -\frac{1}{2} \\ -\frac{1}{2} & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & \frac{1}{2} \\ \frac{1}{2} & 1 \end{array} \right) & \left( \begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right) \\ \hline a(N) & 1 & 240 & 240 & 2160 & 2160 & 240 & 13440 & 30240 & 13440 & 240 \\ \hline \exp(2\pi i \operatorname{Tr}(N\tau)) & 1 & q_1 & q_2 & q_1^2 & q_2^2 & \frac{q_1 q_2}{\zeta^2} & \frac{q_1 q_2}{\zeta} & q_1 q_2 & q_1 q_2 \zeta & q_1 q_2 \zeta^2 \end{array} \]

16차원

  • \(E_8\oplus E_8\) and \(D_{16}^{+}\) lattice
  • for \(g=1,2,3\), \(\Theta_{E_8\oplus E_8}^{(g)}=\Theta_{D_{16}^{+}}^{(g)}\)
  • \(\Theta^{(4)}_{E_8\oplus E_8}\neq \Theta^{(4)}_{D_{16}^{+}}\)
  • \(\Theta^{(4)}_{E_8\oplus E_8}-\Theta^{(4)}_{D_{16}^{+}}\), Siegel cusp form of weight 8 called the Schottky form

24차원

  • for 24 Niemeier lattices, the associated theta series are linearly dependent in degree \(\leq\) 11 and linearly independent in degree 12 (Borcherds-Freitag-Weissauer, 1998)
thm

For a positive definite even unimodular lattice \(\Lambda\), \(\theta^{(g)}_{\Lambda}\) is a Siegel modular form of weight \(\frac{n}{2}\) w.r.t. \(\Gamma_g\)

symplectic group

  • symplectic group \(\Gamma_g:=\operatorname{Sp}(2g,\Z)=\{M\in \operatorname{GL}(2g,\mathbb{Z})|M^T J_{g} M = J_{g}\}\)

where \[ J_{g} =\begin{pmatrix}0 & I_g \\-I_g & 0 \\\end{pmatrix} \]

  • \(2g\times 2g\) matrix
  • one can check that for

\[M=\begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_g,\] \[ \begin{align} A^tC=C^tA \\ B^tD=D^tB \\ A^tD-C^tB= I_g \end{align} \]

  • the lattice \(\mathbb{Z}^{2g}\) of rank \(2g\) with basis \(a_1,\cdots, a_g,b_1\cdots,b_g\) with the symplectic form

\[ \langle a_i,b_j \rangle = \begin{cases} 1, & \text{if }i=j\\ 0, & \text{if }i\neq j \\ \end{cases} \]

  • then \(\Gamma_g=\operatorname{Aut}(\mathbb{Z}^{2g},\langle,\rangle)\)
  • note that

\[ \begin{pmatrix} I_g & S \\ 0& I_g \\\end{pmatrix} \in \Gamma_g \] for any symmetric integral matrix \(S\)

Siegel upper-half space

  • \(\mathcal{H}_g\)

\[ \mathcal{H}_g=\left\{\tau \in \operatorname{Mat}_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{ positive definite} \right\} \]

  • there is an action of \(\Gamma_g\) on \(\mathcal{H}_g\) by

\[ \tau\mapsto \gamma(\tau)=(A\tau +B)(C\tau + D)^{-1} \]

  • we need to check that \(C\tau + D\) Is invertible and \(\Im{\gamma(\tau)}>0 \)

Riemann bilinear relation

  • 틀:수학노트
  • \(X\) : compact Riemann surface of genus \(g\)
  • there exists a basis \(a_1, \dots, a_g,b_1,\cdots,b_g\) of \(H_1(X, \mathbb{Z}) \cong \mathbb{Z}^{2g}\) with the intersection pairing (canonical homology basis)

\[ \langle a_i,b_j \rangle = \begin{cases} 1, & \text{if }i=j\\ 0, & \text{if }i\neq j \\ \end{cases} \]

  • there exists a basis of the space of holomorphic 1-form, \(\omega_1,\cdots,\omega_{g}\) such that

\[ \int_{a_i}\omega_j=\delta_{ij} \]

  • if we set \(\tau_{i,j}=\int_{b_i}\omega_j\), then \(\tau=(\tau_{i,j})_{1\leq i,j\leq g}\) satisfies the following properties
  1. \(\tau^{\mathrm{T}}=\tau\)
  2. \(\textrm{Im}(\tau)\) is positive definite
  • this is called the Riemann bilinear relation
  • \(\tau\in \mathcal{H}_g\) and and it is called a period matrix of \(X\)
  • \(\mathcal{A}_g=\mathcal{H}_g/\Gamma_g\) : moduli space of principally polarized abelian varieties

Siegel modular forms

definition

A holomorphic function \(f:\mathcal{H}_g\to \mathbb{C}\) is a Siegel modular form of weight k and genus(or degree) \(g\) if \[ f \left( (A\tau +B)(C\tau + D)^{-1}\right) = \det(C\tau +D)^{k} f(\tau),\, \forall \begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_g \] and it must be holomorphic at the cusp if \(g=1\)

  • denote the vector space of such functions as \(M_k(\Gamma_g)\)

Fourier expansion

  • note that

\[ \begin{pmatrix} I_g & S \\ 0& I_g \\\end{pmatrix}\cdot \tau = \tau+S \]

  • \(f\in M_k(\Gamma_g)\) satisfies \(f(\tau+S)=f(\tau)\) for any symmetric integral \(S\)
  • we get the following expansion

\[ f(q_{11},\cdots, q_{gg})=\sum_{n_{11},\cdots, n_{ij},\cdots, n_{gg}\in \mathbb{Z}}a(n_{11},\cdots, n_{gg})q_{11}^{n_{11}}\cdots q_{gg}^{n_{gg}} \label{fou1} \] where \(q_{ij}=e^{2\pi i \tau_{ij}}\), \(i\leq j\)

  • define a symmetric matrix \(N=(N_{ij})_{1\leq i,j\leq g}\) as

\[ N_{ij}= \begin{cases} n_{ii}, & \text{if \]i=j\(}\\ n_{ij}/2, & \text{if \)i\neq j\(} \end{cases} \)

  • \(\operatorname{Tr}(N\tau)=\sum_{i=1}^{g}N_{ii}\tau_{ii}+2\sum_{1\leq i<j\leq g}N_{ij}\tau_{ij}\)
  • \(\exp(2\pi i \operatorname{Tr}(N\tau))=q_{11}^{n_{11}}\cdots q_{gg}^{n_{gg}}\)
  • \ref{fou1} can be rewritten as

\[f(\tau)=\sum_{N}a(N)\exp\left(2\pi i \operatorname{Tr}(N\tau)\right)\] where the summation is over \(N=(N_{ij})\in \operatorname{Mat}_g(\frac{1}{2}\mathbb{Z})\) half-integral matrix

Koecher Principle

For a Siegel modular form \(f\in M_k(\Gamma_g)\), if \(N\) is not a positive semi-definite matrix, then \(a(N)=0\). (this is why holomorphicity at the cusp is not necessary if \(g>1\))

지겔 모듈라 형식의 예

\[ E_{k}^{(g)}(\tau) = \sum_{(C,D)} \frac{1}{\det(C\tau +D)^{k}} \] where the summation is over all \[ \begin{pmatrix}A & B \\ C & D \\\end{pmatrix}\in \Gamma_{g,0}\backslash \Gamma_{g} \] and \[ \Gamma_{g,0}=\{\begin{pmatrix}A & B \\ 0 & D \\\end{pmatrix}\in \Gamma_{g}\} \] (the summation extends over all classes of coprime symmetric pairs, i. e. over all inequivalent bottom rows of elements of \(\Gamma_g\) with respect to left multiplications by unimodular integer matrices of degree \(g\). In other words, the sum is over a full set of representatives for the cosets \(\operatorname{GL}(g,\mathbb{Z})\backslash \Gamma_{g}\))

Siegel-Weil formula

thm

For a positive definite even unimodular lattice \(L\), \[\left( \sum_{M\in {\rm gen}(L)}\frac{\Theta_M^{(g)}(Z)}{|{\rm Aut}(M)|}\right)\,\cdot\, \left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1}= E^{(g)}_{k}(Z),\]

Moreover, the Fourier coefficients \(a_{E}(N)\) of \(E\) can be expressed as an infinite product of local densities \[ a_{E}(N)=\prod_{p:\text{primes}}\beta_{L,p}(N) \label{lp} \]

mass formula

  • for a half-integral \(N\),

\[ a_{E}(N)=\left( \sum_{M\in {\rm gen}(L)}\frac{r_M(N)}{|{\rm Aut}(M)|}\right)\,\cdot\, \left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1} \] where \(\Theta_M^{(g)}(Z)=\sum_{N}r_M(N)\exp\left(2\pi i \operatorname{Tr}(N\tau)\right)\)

  • if \(2N\) is a Gram matrix of \(L\), then we obtain

\[ a_{E}(N)=\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1} \] as \[ r_M(N) = \begin{cases} |\operatorname{Aut}(L)|, & \text{if }L\sim M \\ 0, & \text{if }L\nsim M \\ \end{cases} \]

  • then we can express

\[ a_{E}(N)=\left(\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|}\right)^{-1} \] in terms of local densities \ref{lp}, which gives the Smith-Minkowski-Siegel mass formula