"Cartan decomposition of general linear groups"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(새 문서: ==computational resource== * https://drive.google.com/file/d/1LV3AvkCQAGB_ifEzpy8V-96mq-2a2amO/view)
 
imported>Pythagoras0
1번째 줄: 1번째 줄:
 +
==introduction==
 +
*
 +
 +
$
 +
\newcommand{\pmat}[4]{\begin{pmatrix} #1 & #2 \\ #3 & #4\end{pmatrix}}
 +
\def\GL#1{\mathrm{GL}_{#1}}
 +
\newcommand{\Q}{\mathbb{Q}}
 +
\newcommand{\Z}{\mathbb{Z}}
 +
\newcommand{\Qp}{\Q_p}
 +
\newcommand{\Zp}{\Z_p}
 +
\newcommand{\HH}{\mathcal{H}}
 +
\newcommand{\fsph}{f_{\mathrm{sph}}}
 +
$
 +
 +
==application to Hecke operators==
 +
* Let $G = \GL2(\Qp)$ and $K = \GL2(\Zp)$
 +
* Cartan decomposition : $G = \bigcup_{\lambda} Bp^{\lambda}B$
 +
* The Hecke operator $T_p\in \HH_{\GL2(\Qp)}$ is given by convolution with the characteristic function of $K\pmat p 0 0 1 K$
 +
* Similarly, the operator $R_p$ is given by convolution with the characteristic function of $K \pmat p 0 0 p K$
 +
* How $T_p$ and $R_p$ act?
 +
* The double coset for $T_p$ decomposes as
 +
\[
 +
K \pmat p 0 0 1 K =
 +
\bigcup_{b=0}^{p-1}
 +
\pmat p b 0 1 K
 +
\bigcup
 +
\pmat 1 0 0 p K .
 +
\]
 +
* Hence
 +
\[
 +
\begin{aligned}
 +
(T_p \fsph)(1) & =
 +
\int_{K}\sum_{b}^{p-1}
 +
\fsph\left(\pmat p b 0 1 g \right)+
 +
\fsph\left(\pmat 1 0 0 p g \right)\, dg \\
 +
& =
 +
\fsph\left(\pmat p b 0 1 g \right)+
 +
\fsph\left(\pmat 1 0 0 p g \right) \\
 +
& =
 +
p \chi_1(p)|p|^{1/2}+p \chi_2(p)|p|^{-1/2} \\
 +
& =
 +
p^{1/2}(\chi_1(p)+\chi_2(p)).
 +
\end{aligned}
 +
\]
 +
 +
* The double coset for $R_p$ is the single coset $\pmat p 0 0 p K$, so
 +
\[
 +
\begin{aligned}
 +
(R_p\fsph)(1) & = \int_K \fsph\left(\pmat p 0 0 p g \right)+ dg \\
 +
& =
 +
\fsph\left(\pmat p 0 0 p g \right) \\
 +
& =
 +
\chi_1(p)\chi_2(p).
 +
\end{aligned}
 +
\]
 +
 +
 
==computational resource==
 
==computational resource==
 
* https://drive.google.com/file/d/1LV3AvkCQAGB_ifEzpy8V-96mq-2a2amO/view
 
* https://drive.google.com/file/d/1LV3AvkCQAGB_ifEzpy8V-96mq-2a2amO/view

2020년 2월 19일 (수) 00:59 판

introduction

$ \newcommand{\pmat}[4]{\begin{pmatrix} #1 & #2 \\ #3 & #4\end{pmatrix}} \def\GL#1{\mathrm{GL}_{#1}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Qp}{\Q_p} \newcommand{\Zp}{\Z_p} \newcommand{\HH}{\mathcal{H}} \newcommand{\fsph}{f_{\mathrm{sph}}} $

application to Hecke operators

  • Let $G = \GL2(\Qp)$ and $K = \GL2(\Zp)$
  • Cartan decomposition : $G = \bigcup_{\lambda} Bp^{\lambda}B$
  • The Hecke operator $T_p\in \HH_{\GL2(\Qp)}$ is given by convolution with the characteristic function of $K\pmat p 0 0 1 K$
  • Similarly, the operator $R_p$ is given by convolution with the characteristic function of $K \pmat p 0 0 p K$
  • How $T_p$ and $R_p$ act?
  • The double coset for $T_p$ decomposes as

\[ K \pmat p 0 0 1 K = \bigcup_{b=0}^{p-1} \pmat p b 0 1 K \bigcup \pmat 1 0 0 p K . \]

  • Hence

\[ \begin{aligned} (T_p \fsph)(1) & = \int_{K}\sum_{b}^{p-1} \fsph\left(\pmat p b 0 1 g \right)+ \fsph\left(\pmat 1 0 0 p g \right)\, dg \\ & = \fsph\left(\pmat p b 0 1 g \right)+ \fsph\left(\pmat 1 0 0 p g \right) \\ & = p \chi_1(p)|p|^{1/2}+p \chi_2(p)|p|^{-1/2} \\ & = p^{1/2}(\chi_1(p)+\chi_2(p)). \end{aligned} \]

  • The double coset for $R_p$ is the single coset $\pmat p 0 0 p K$, so

\[ \begin{aligned} (R_p\fsph)(1) & = \int_K \fsph\left(\pmat p 0 0 p g \right)+ dg \\ & = \fsph\left(\pmat p 0 0 p g \right) \\ & = \chi_1(p)\chi_2(p). \end{aligned} \]


computational resource