"Cartan decomposition of general linear groups"의 두 판 사이의 차이
imported>Pythagoras0 (새 문서: ==computational resource== * https://drive.google.com/file/d/1LV3AvkCQAGB_ifEzpy8V-96mq-2a2amO/view) |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | * | ||
+ | |||
+ | $ | ||
+ | \newcommand{\pmat}[4]{\begin{pmatrix} #1 & #2 \\ #3 & #4\end{pmatrix}} | ||
+ | \def\GL#1{\mathrm{GL}_{#1}} | ||
+ | \newcommand{\Q}{\mathbb{Q}} | ||
+ | \newcommand{\Z}{\mathbb{Z}} | ||
+ | \newcommand{\Qp}{\Q_p} | ||
+ | \newcommand{\Zp}{\Z_p} | ||
+ | \newcommand{\HH}{\mathcal{H}} | ||
+ | \newcommand{\fsph}{f_{\mathrm{sph}}} | ||
+ | $ | ||
+ | |||
+ | ==application to Hecke operators== | ||
+ | * Let $G = \GL2(\Qp)$ and $K = \GL2(\Zp)$ | ||
+ | * Cartan decomposition : $G = \bigcup_{\lambda} Bp^{\lambda}B$ | ||
+ | * The Hecke operator $T_p\in \HH_{\GL2(\Qp)}$ is given by convolution with the characteristic function of $K\pmat p 0 0 1 K$ | ||
+ | * Similarly, the operator $R_p$ is given by convolution with the characteristic function of $K \pmat p 0 0 p K$ | ||
+ | * How $T_p$ and $R_p$ act? | ||
+ | * The double coset for $T_p$ decomposes as | ||
+ | \[ | ||
+ | K \pmat p 0 0 1 K = | ||
+ | \bigcup_{b=0}^{p-1} | ||
+ | \pmat p b 0 1 K | ||
+ | \bigcup | ||
+ | \pmat 1 0 0 p K . | ||
+ | \] | ||
+ | * Hence | ||
+ | \[ | ||
+ | \begin{aligned} | ||
+ | (T_p \fsph)(1) & = | ||
+ | \int_{K}\sum_{b}^{p-1} | ||
+ | \fsph\left(\pmat p b 0 1 g \right)+ | ||
+ | \fsph\left(\pmat 1 0 0 p g \right)\, dg \\ | ||
+ | & = | ||
+ | \fsph\left(\pmat p b 0 1 g \right)+ | ||
+ | \fsph\left(\pmat 1 0 0 p g \right) \\ | ||
+ | & = | ||
+ | p \chi_1(p)|p|^{1/2}+p \chi_2(p)|p|^{-1/2} \\ | ||
+ | & = | ||
+ | p^{1/2}(\chi_1(p)+\chi_2(p)). | ||
+ | \end{aligned} | ||
+ | \] | ||
+ | |||
+ | * The double coset for $R_p$ is the single coset $\pmat p 0 0 p K$, so | ||
+ | \[ | ||
+ | \begin{aligned} | ||
+ | (R_p\fsph)(1) & = \int_K \fsph\left(\pmat p 0 0 p g \right)+ dg \\ | ||
+ | & = | ||
+ | \fsph\left(\pmat p 0 0 p g \right) \\ | ||
+ | & = | ||
+ | \chi_1(p)\chi_2(p). | ||
+ | \end{aligned} | ||
+ | \] | ||
+ | |||
+ | |||
==computational resource== | ==computational resource== | ||
* https://drive.google.com/file/d/1LV3AvkCQAGB_ifEzpy8V-96mq-2a2amO/view | * https://drive.google.com/file/d/1LV3AvkCQAGB_ifEzpy8V-96mq-2a2amO/view |
2020년 2월 19일 (수) 00:59 판
introduction
$ \newcommand{\pmat}[4]{\begin{pmatrix} #1 & #2 \\ #3 & #4\end{pmatrix}} \def\GL#1{\mathrm{GL}_{#1}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Qp}{\Q_p} \newcommand{\Zp}{\Z_p} \newcommand{\HH}{\mathcal{H}} \newcommand{\fsph}{f_{\mathrm{sph}}} $
application to Hecke operators
- Let $G = \GL2(\Qp)$ and $K = \GL2(\Zp)$
- Cartan decomposition : $G = \bigcup_{\lambda} Bp^{\lambda}B$
- The Hecke operator $T_p\in \HH_{\GL2(\Qp)}$ is given by convolution with the characteristic function of $K\pmat p 0 0 1 K$
- Similarly, the operator $R_p$ is given by convolution with the characteristic function of $K \pmat p 0 0 p K$
- How $T_p$ and $R_p$ act?
- The double coset for $T_p$ decomposes as
\[ K \pmat p 0 0 1 K = \bigcup_{b=0}^{p-1} \pmat p b 0 1 K \bigcup \pmat 1 0 0 p K . \]
- Hence
\[ \begin{aligned} (T_p \fsph)(1) & = \int_{K}\sum_{b}^{p-1} \fsph\left(\pmat p b 0 1 g \right)+ \fsph\left(\pmat 1 0 0 p g \right)\, dg \\ & = \fsph\left(\pmat p b 0 1 g \right)+ \fsph\left(\pmat 1 0 0 p g \right) \\ & = p \chi_1(p)|p|^{1/2}+p \chi_2(p)|p|^{-1/2} \\ & = p^{1/2}(\chi_1(p)+\chi_2(p)). \end{aligned} \]
- The double coset for $R_p$ is the single coset $\pmat p 0 0 p K$, so
\[ \begin{aligned} (R_p\fsph)(1) & = \int_K \fsph\left(\pmat p 0 0 p g \right)+ dg \\ & = \fsph\left(\pmat p 0 0 p g \right) \\ & = \chi_1(p)\chi_2(p). \end{aligned} \]