"Lebesgue identity"의 두 판 사이의 차이
imported>Pythagoras0 |
imported>Pythagoras0 |
||
7번째 줄: | 7번째 줄: | ||
==fermionic form expression== | ==fermionic form expression== | ||
− | :<math>f(a,z)=\sum_{k\geq 0}\frac{a^{k}q^{k(k-1)/2}(-zq)_{k}}{(q)_{k}}=\sum_{i,j\geq 0}\frac{a^{i+j}z^{j}q^{\frac{i^2+2ij+j^2-i}{2}}}{(q)_{i}(q)_{j}}</math> | + | :<math>f(a,z)=\sum_{k\geq 0}\frac{a^{k}q^{k(k-1)/2}(-zq)_{k}}{(q)_{k}}=\sum_{i,j\geq 0}\frac{a^{i+j}z^{j}q^{\frac{i^2+2ij+j^2-i}{2}}}{(q)_{i}(q)_{j}}\label{faz}</math> |
(proof) | (proof) | ||
− | We use the q-binomial identity [[useful techniques in q-series]] | + | We use the q-binomial identity (see [[useful techniques in q-series]]) |
:<math>(-z;q)_{n}= \sum_{r=0}^{n} \begin{bmatrix} n\\ r\end{bmatrix}_{q}q^{r(r-1)/2}z^r</math> and | :<math>(-z;q)_{n}= \sum_{r=0}^{n} \begin{bmatrix} n\\ r\end{bmatrix}_{q}q^{r(r-1)/2}z^r</math> and | ||
− | :<math>(-zq;q)_{k}= \sum_{r=0}^{k} \begin{bmatrix} k\\ r\end{bmatrix}_{q}q^{r(r+1)/2}z^r</math> | + | :<math>(-zq;q)_{k}= \sum_{r=0}^{k} \begin{bmatrix} k\\ r\end{bmatrix}_{q}q^{r(r+1)/2}z^r.</math> |
+ | |||
+ | Then the LHS of \ref{faz} can be written as | ||
:<math> | :<math> | ||
\begin{aligned} | \begin{aligned} | ||
20번째 줄: | 22번째 줄: | ||
\end{aligned} | \end{aligned} | ||
</math> | </math> | ||
− | + | By putting <math>j=r</math> and <math>i=k-j</math>, | |
:<math> | :<math> | ||
\begin{aligned} | \begin{aligned} | ||
28번째 줄: | 30번째 줄: | ||
</math> ■ | </math> ■ | ||
− | * here we get a 2x2 matrix ([[rank 2 case]]) | + | * here we get a 2x2 matrix ([[rank 2 case]]) |
+ | :<math> \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}</math> | ||
2013년 3월 13일 (수) 05:47 판
introduction
- 틀:수학노트
- [Alladi&Gordon1993] 278&279p
\[f(a,c)=\sum_{k\geq 0}\frac{a^{k}q^{k(k-1)/2}(-cq)_{k}}{(q)_{k}}\]
fermionic form expression
\[f(a,z)=\sum_{k\geq 0}\frac{a^{k}q^{k(k-1)/2}(-zq)_{k}}{(q)_{k}}=\sum_{i,j\geq 0}\frac{a^{i+j}z^{j}q^{\frac{i^2+2ij+j^2-i}{2}}}{(q)_{i}(q)_{j}}\label{faz}\]
(proof)
We use the q-binomial identity (see useful techniques in q-series) \[(-z;q)_{n}= \sum_{r=0}^{n} \begin{bmatrix} n\\ r\end{bmatrix}_{q}q^{r(r-1)/2}z^r\] and \[(-zq;q)_{k}= \sum_{r=0}^{k} \begin{bmatrix} k\\ r\end{bmatrix}_{q}q^{r(r+1)/2}z^r.\]
Then the LHS of \ref{faz} can be written as \[ \begin{aligned} f(a,z)& =\sum_{k\geq 0}\frac{a^{k}q^{k(k-1)/2}(-zq)_{k}}{(q)_{k}}\\ {}&=\sum_{k\geq 0}\frac{a^kq^{k(k-1)/2}}{(q)_{k}}\sum_{r=0}^{k} \begin{bmatrix} k\\ r\end{bmatrix}_{q}q^{r(r+1)/2}z^r \end{aligned} \] By putting \(j=r\) and \(i=k-j\), \[ \begin{aligned} {}&=\sum_{i,j\geq 0}\frac{a^{i+j}z^{j}q^{(i+j)(i+j-1)/2+j(j+1)/2}}{(q)_{i}(q)_{j}}\\ {}&=\sum_{i,j\geq 0}\frac{a^{i+j}z^{j}q^{\frac{i^2+2ij+j^2-i}{2}}}{(q)_{i}(q)_{j}} \end{aligned} \] ■
- here we get a 2x2 matrix (rank 2 case)
\[ \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}\]
Lebesgue's identity
- Put a=q, c=z. we get Lebesgue's identity.
\[f(q,z)=\sum_{k\geq 0}\frac{q^{k}q^{k(k-1)/2}(-zq)_{k}}{(q)_{k}}=\sum_{k\geq 0}\frac{q^{k(k+1)/2}(-zq)_{k}}{(q)_{k}}=(-zq^2;q^2)_{\infty}(-q)_{\infty}=\prod_{m=1}^{\infty} (1+zq^{2m})(1+q^{m})\]
- special case : we get a rank 2 form of Lebesgue's identity
\[f(q,z)=\sum_{k\geq 0}\frac{q^{k}q^{k(k-1)/2}(-zq)_{k}}{(q)_{k}}=\sum_{i,j\geq 0}\frac{z^{j}q^{\frac{i^2+2ij+j^2+i+2j}{2}}}{(q)_{i}(q)_{j}}=(-zq^2;q^2)_{\infty}(-q)_{\infty}\]
specializations
(Theorem) \[f(q,q^{-1})=\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+j^2+i}{2}}}{(q)_{i}(q)_{j}}=(-q;q^2)_{\infty}(-q)_{\infty}=\frac{(q^{2};q^{2})_{\infty}^3}{(q;q)_{\infty}^2(q^{4};q^{4})_{\infty}}=\frac{(q^2;q^4)_{\infty}}{(q;q^4)_{\infty}^2(q^3;q^4)_{\infty}^2},\] \[f(q,1)=\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+2j^2}{2}+\frac{i+2j}{2}}}{(q)_{i}(q)_{j}}=(-q^2;q^2)_{\infty}(-q)_{\infty}=\frac{(q^4;q^4)_{\infty}}{(q;q)_{\infty}}=\frac{1}{(q^1;q^4)_{\infty}(q^2;q^4)_{\infty}(q^3;q^4)_{\infty}}\]
(proof)
useful techniques in q-series \[(-q)_{n}=\frac{(q^2;q^2)_{n}}{(q;q)_{n}}\] \[(-q;q^{2})_{n}=\frac{(-q;q)_{n}}{(-q^{2};q^{2})_{n}}=\frac{(q^{2};q^{2})_{n}(q^{2};q^{2})_{n}}{(q^{4};q^{4})_{n}(q;q)_{n}}=\frac{(q^{2};q^{4})_{n}}{(q^{1};q^{4})_{n}(q^{3};q^{4})_{n}}\] . \[(-q^2;q^{2})_{n}=\frac{(q^4;q^4)_{n}}{(q^2;q^2)_{n}}=\frac{1}{(q^2;q^4)_{n}}\]
Therefore \[f(q,q^{-1})=\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+j^2+i}{2}}}{(q)_{i}(q)_{j}}=(-q;q^2)_{\infty}(-q)_{\infty}=\frac{(q^{2};q^{2})_{\infty}^3}{(q;q)_{\infty}^2(q^{4};q^{4})_{\infty}}=\frac{(q^2;q^4)_{\infty}}{(q;q^4)_{\infty}^2(q^3;q^4)_{\infty}^2}\] \[f(q,1)=\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+2j^2}{2}+\frac{i+2j}{2}}}{(q)_{i}(q)_{j}}=(-q^2;q^2)_{\infty}(-q)_{\infty}=\frac{(q^4;q^4)_{\infty}}{(q;q)_{\infty}}=\frac{1}{(q^1;q^4)_{\infty}(q^2;q^4)_{\infty}(q^3;q^4)_{\infty}}\]. ■
continued fraction expression
- rank 2 continued fraction
- [Alladi&Gordon1993] 277-278p
Let \(f(a,c)=\sum_{k\geq 0}\frac{a^{k}q^{k(k-1)/2}(-cq)_{k}}{(q)_{k}}\).
\(F(a,c)=\frac{f(a,c)}{f(aq,c)}=1+a+\frac{acq}{1+aq} {\ \atop+} \frac{acq^2}{1+aq^2}{\ \atop+} \frac{acq^3}{1} {\ \atop+\dots}\)
\(R(a,b)=\frac{f(a,a^{-1}b)}{f(aq,a^{-1}b)}-a=\frac{R^{N}(a,b)}{R^{D}(a,b)}=1+\frac{bq}{1+aq} {\ \atop+} \frac{bq^2}{1+aq^2}{\ \atop+} \frac{bq^3}{1} {\ \atop+\dots}\)
where
\(R^{N}(a,b)=f(q,a^{-1}b)-af(aq,a^{-1}b)=f(aq,a^{-1}bq^{-1})=\sum_{k\geq 0}\frac{a^{k}q^{k(k+1)/2}(-a^{-1}b)_{k}}{(q)_{k}}=\sum_{i,j\geq 0}\frac{a^{i}b^{j}q^{\frac{i^2+2ij+j^2+i}{2}}}{(q)_{i}(q)_{j}}\)
\(R^{D}(a,b)=f(aq,a^{-1}b)=\sum_{k\geq 0}\frac{a^{k}q^{k(k+1)/2}(-a^{-1}bq)_{k}}{(q)_{k}}=\sum_{i,j\geq 0}\frac{a^{i}b^{j}q^{\frac{i^2+2ij+j^2+i+2j}{2}}}{(q)_{i}(q)_{j}}\) - application
\(R^N(1,1)=f(q,q^{-1})=\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+j^2+i}{2}}}{(q)_{i}(q)_{j}}=(-q;q^2)_{\infty}(-q)_{\infty}=\frac{(q^{2};q^{2})_{\infty}^3}{(q;q)_{\infty}^2(q^{4};q^{4})_{\infty}}=\frac{(q^2;q^4)_{\infty}}{(q^1;q^4)_{\infty}^2(q^3;q^4)_{\infty}^2}\)
\(R^{D}(1,1)=f(q,1)=\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+2j^2+i+2j}{2}}}{(q)_{i}(q)_{j}}=(-q^2;q^2)_{\infty}(-q)_{\infty}=\frac{(q^4;q^4)_{\infty}}{(q;q)_{\infty}}=\frac{1}{(q^1;q^4)_{\infty}(q^2;q^4)_{\infty}(q^3;q^4)_{\infty}}\) - continued fraction
\[R(1,1)=\frac{R^{N}(1,1)}{R^{D}(1,1)}=1+{q \over 1+q + } {q^2 \over 1+q^2+} {q^3 \over 1+q^3} \cdots=\frac{(q^2;q^4)_{\infty}^2}{(q^1;q^4)_{\infty}(q^3;q^4)_{\infty}}\]
comparison with Rogers-Selberg identities
- Rogers-Selberg identities
\(AG_{3,3}(q)=\sum_{n_1,n_{2}\geq0}\frac{q^{n_{1}^2+2n_1n_2+2n_{2}^{2}}}{(q)_{n_1}(q)_{n_{2}}}=\prod_{r\neq 0,\pm 3 \pmod {7}}\frac{1}{1-q^r}=\frac{(q^3;q^7)_\infty (q^4; q^7)_\infty(q^7;q^7)_\infty}{(q)_\infty}\)
\(A(q)W(q)=AG_{3,3}(q)\)
where
\(W(q)=(-q)_{\infty}=\frac{(q^{2};q^{2})_{\infty}}{(q;q)_{\infty}}\) - Lebesgue's identity
\(\frac{W(q)^2}{W(q^2)}=\sum_{i,j\geq 0}\frac{q^{(i^2+2ij+2j^2)/2+i/2}}{(q)_{i}(q)_{j}}\)
(proof)
Note that from useful techniques in q-series
\((-q;q^{2})_{\infty}=\frac{(-q;q)_{\infty}}{(-q^{2};q^{2})_{\infty}}=\frac{(q^{2};q^{2})_{\infty}(q^{2};q^{2})_{\infty}}{(q^{4};q^{4})_{\infty}(q;q)_{\infty}}=\frac{W(q)}{W(q^2)}\)
Therefore
\((-q;q^2)_{\infty}(-q)_{\infty}=\frac{(q^{2};q^{2})_{\infty}^3}{(q;q)_{\infty}^2(q^{4};q^{4})_{\infty}}=\frac{W(q)^2}{W(q^2)}\). ■
\(W(q)=\frac{\eta(2\tau)}{\eta(\tau)}\)
\(W(q^2)=\frac{\eta(4\tau)}{\eta(2\tau)}\)
\(\frac{W(q)^2}{W(q^2)}=\frac{(q^{2};q^{2})_{\infty}^3}{(q;q)_{\infty}^2(q^{4};q^{4})_{\infty}}=\frac{\eta(2\tau)^3}{\eta(\tau)^2\eta(4\tau)}=\sum_{i,j\geq 0}\frac{q^{(i^2+2ij+2j^2)/2+i/2}}{(q)_{i}(q)_{j}}\)
\(W(q^2)W(q)=\frac{\eta(4\tau)}{\eta(\tau)}=q^{1/8}\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+2j^2}{2}+\frac{i+2j}{2}}}{(q)_{i}(q)_{j}}=\frac{q^{1/8}(q^4;q^4)_{\infty}}{(q;q)_{\infty}}=\frac{q^{1/8}}{(q^1;q^4)_{\infty}(q^2;q^4)_{\infty}(q^3;q^4)_{\infty}}\)
history
encyclopedia
articles
- New Proofs of Identities of Lebesgue and Göllnitz via Tilings
- DP Little, 2007
- [Alladi&Gordon1993] Alladi, Krishnaswami, and Basil Gordon. 1993. Partition identities and a continued fraction of Ramanujan Journal of Combinatorial Theory, Series A 63 (2) (July): 275-300. doi:10.1016/0097-3165(93)90061-C.