"Slater 37"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
30번째 줄: | 30번째 줄: | ||
* Use the following '''[Slater52-1] '''(4.2)<br><br><br> | * Use the following '''[Slater52-1] '''(4.2)<br><br><br> | ||
* Specialize<br><math>a=q^{2},d=q^2,e=q</math><br> | * Specialize<br><math>a=q^{2},d=q^2,e=q</math><br> | ||
− | * Bailey pair<br><math>\alpha_{0}=1</math>, <math>\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)</math>,<math>\alpha_{2n+1}=0</math><br><math>\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{3})_{n-r}(q)_{n+r}}=\frac{(q^2,q^2)_{n}}{(q)_{n}( | + | * Bailey pair<br><math>\alpha_{0}=1</math>, <math>\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)</math>,<math>\alpha_{2n+1}=0</math><br><math>\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{3})_{n-r}(q)_{n+r}}=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}</math><br> |
38번째 줄: | 38번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">Bailey pair </h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">Bailey pair </h5> | ||
− | * Bailey pairs<br> <br><math>\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}</math><br><math>\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)</math><br> <br><math>\alpha_{0}=1</math>, <math>\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)</math>,<math>\alpha_{2n+1}=0</math><br><math>\beta_n=\frac{(q^2,q^2)_{n}}{(q)_{n}( | + | * Bailey pairs<br> <br><math>\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}</math><br><math>\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)</math><br> <br><math>\alpha_{0}=1</math>, <math>\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)</math>,<math>\alpha_{2n+1}=0</math><br><math>\beta_n=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}</math><br> |
2010년 7월 15일 (목) 23:33 판
Note
- not checked
type of identity
- Slater's list
- I(17)
Bailey pair 1
- Use the folloing
\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\), \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\) - Specialize
\(x=q^{3}, y=-q, z\to\infty\). -
Bailey pair
\(\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}\)
\(\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)\)
Bailey pair 2
- Use the following [Slater52-1] (4.2)
- Specialize
\(a=q^{2},d=q^2,e=q\) - Bailey pair
\(\alpha_{0}=1\), \(\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)\),\(\alpha_{2n+1}=0\)
\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{3})_{n-r}(q)_{n+r}}=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}\)
Bailey pair
- Bailey pairs
\(\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}\)
\(\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)\)
\(\alpha_{0}=1\), \(\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)\),\(\alpha_{2n+1}=0\)
\(\beta_n=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}\)
q-series identity
\(\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=1}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\)
- Bailey's lemma
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{(-q)_{\infty}}{(q)_{\infty}}\sum_{n=0}^{\infty}(-1)^{n}(q^{\frac{3n^2+n}{2}}-q^{\frac{3n^2+5n+2}{2}})=(-q)_{\infty}\) (오일러의 오각수정리(pentagonal number theorem) was used to verify this)
\(\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{\frac{n(n+1)}{2}}}{(q)_{n}}\)
Bethe type equation (cyclotomic equation)
Let
\(\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{
\prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}\).
Then \(\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a\) has a unique root \(0<\mu<1\). We get
\(\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})\)
a=1,d=1,e=1
The equation becomes \(1-x=x\).
\(4L(\frac{1}{2})=\frac{1}{2}(\frac{2}{3}\pi^2)=\frac{1}{3}\pi^2\)
dilogarithm identity
\(L(\frac{1}{2})=\frac{1}{12}\pi^2\)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
articles
-
- Rogers-Ramanujan-Slater Type identities
- McLaughlin, 2008
- McLaughlin, 2008
- Further identities of the Rogers-Ramanujan type
- Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167
- Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167
- A New Proof of Rogers's Transformations of Infinite Series
- Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475
- Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475
-
- http://www.ams.org/mathscinet
- [1]http://www.zentralblatt-math.org/zmath/en/
- [2]http://arxiv.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/