"Slater 37"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Note</h5> |
* not checked<br> | * not checked<br> | ||
7번째 줄: | 7번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">type of identity</h5> |
* [[Slater list|Slater's list]] | * [[Slater list|Slater's list]] | ||
16번째 줄: | 16번째 줄: | ||
− | <h5 style="line-height: 2em; margin | + | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Bailey pair 1</h5> |
* Use the folloing<br><math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>, <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math><br> | * Use the folloing<br><math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>, <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math><br> | ||
* Specialize<br><math>x=q^{3}, y=-q, z\to\infty</math>.<br> | * Specialize<br><math>x=q^{3}, y=-q, z\to\infty</math>.<br> | ||
− | * | + | * Bailey pair<br><math>\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}</math><br><math>\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)</math><br> |
26번째 줄: | 26번째 줄: | ||
− | <h5 style="line-height: 2em; margin | + | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Bailey pair 2</h5> |
− | * Use the following '''[Slater52-1] '''(4.2)<br> | + | * Use the following '''[Slater52-1] '''(4.2)<br> <br> |
* Specialize<br><math>a=q^{2},d=q^2,e=q</math><br> | * Specialize<br><math>a=q^{2},d=q^2,e=q</math><br> | ||
* Bailey pair<br><math>\alpha_{0}=1</math>, <math>\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)</math>,<math>\alpha_{2n+1}=0</math><br><math>\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{3})_{n-r}(q)_{n+r}}=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}</math><br> | * Bailey pair<br><math>\alpha_{0}=1</math>, <math>\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)</math>,<math>\alpha_{2n+1}=0</math><br><math>\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{3})_{n-r}(q)_{n+r}}=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}</math><br> | ||
36번째 줄: | 36번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Bailey pair </h5> |
* Bailey pairs<br> <br><math>\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}</math><br><math>\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)</math><br> <br><math>\alpha_{0}=1</math>, <math>\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)</math>,<math>\alpha_{2n+1}=0</math><br><math>\beta_n=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}</math><br> | * Bailey pairs<br> <br><math>\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}</math><br><math>\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)</math><br> <br><math>\alpha_{0}=1</math>, <math>\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)</math>,<math>\alpha_{2n+1}=0</math><br><math>\beta_n=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}</math><br> | ||
44번째 줄: | 44번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">q-series identity</h5> |
<math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=1}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math> | <math>\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=1}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})</math> | ||
50번째 줄: | 50번째 줄: | ||
* [[Bailey pair and lemma|Bailey's lemma]]<br><math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}</math><br><math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{(-q)_{\infty}}{(q)_{\infty}}\sum_{n=0}^{\infty}(-1)^{n}(q^{\frac{3n^2+n}{2}}-q^{\frac{3n^2+5n+2}{2}})=(-q)_{\infty}</math> ([http://pythagoras0.springnote.com/pages/4145675 오일러의 오각수정리(pentagonal number theorem)] was used to verify this)<br><math>\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{\frac{n(n+1)}{2}}}{(q)_{n}}</math><br> | * [[Bailey pair and lemma|Bailey's lemma]]<br><math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}</math><br><math>\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{(-q)_{\infty}}{(q)_{\infty}}\sum_{n=0}^{\infty}(-1)^{n}(q^{\frac{3n^2+n}{2}}-q^{\frac{3n^2+5n+2}{2}})=(-q)_{\infty}</math> ([http://pythagoras0.springnote.com/pages/4145675 오일러의 오각수정리(pentagonal number theorem)] was used to verify this)<br><math>\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{\frac{n(n+1)}{2}}}{(q)_{n}}</math><br> | ||
− | * [http://www.research.att.com/ | + | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br> |
** http://www.research.att.com/~njas/sequences/?q= | ** http://www.research.att.com/~njas/sequences/?q= | ||
57번째 줄: | 57번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Bethe type equation (cyclotomic equation)</h5> |
− | Let | + | Let <math>\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{ |
\prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}</math>. | \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}</math>. | ||
78번째 줄: | 78번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">dilogarithm identity</h5> |
<math>L(\frac{1}{2})=\frac{1}{12}\pi^2</math> | <math>L(\frac{1}{2})=\frac{1}{12}\pi^2</math> | ||
86번째 줄: | 86번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items</h5> |
* [[asymptotic analysis of basic hypergeometric series]]<br> | * [[asymptotic analysis of basic hypergeometric series]]<br> | ||
94번째 줄: | 94번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books</h5> |
109번째 줄: | 109번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5> |
* <br> | * <br> | ||
123번째 줄: | 123번째 줄: | ||
* [http://arxiv.org/ ]http://arxiv.org/ | * [http://arxiv.org/ ]http://arxiv.org/ | ||
* http://pythagoras0.springnote.com/ | * http://pythagoras0.springnote.com/ | ||
− | * http://math.berkeley.edu/~reb/papers/index.html | + | * [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html] |
* http://dx.doi.org/ | * http://dx.doi.org/ |
2010년 12월 1일 (수) 16:11 판
Note
- not checked
type of identity
- Slater's list
- I(17)
Bailey pair 1
- Use the folloing
\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\), \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\) - Specialize
\(x=q^{3}, y=-q, z\to\infty\). - Bailey pair
\(\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}\)
\(\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)\)
Bailey pair 2
- Use the following [Slater52-1] (4.2)
- Specialize
\(a=q^{2},d=q^2,e=q\) - Bailey pair
\(\alpha_{0}=1\), \(\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)\),\(\alpha_{2n+1}=0\)
\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{3})_{n-r}(q)_{n+r}}=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}\)
Bailey pair
- Bailey pairs
\(\delta_n=(-q)_{n}q^{\frac{n(n+3)}{2}}\)
\(\gamma_n=\frac{(-q^2)_{\infty}}{(q^3)_{\infty}}q^{\frac{n(n+3)}{2}}(1+q)\)
\(\alpha_{0}=1\), \(\alpha_{2n}=(-1)^{n}q^{n(2n+1)}(1-q^{2n+1})/(1-q)\),\(\alpha_{2n+1}=0\)
\(\beta_n=\frac{(q^2,q^2)_{n}}{(q)_{n}(q^2)_{n}(q^3,q^2)_{n}}\)
q-series identity
\(\prod_{n=1}^{\infty}(1+q^n)=\sum_{n=1}^{\infty}\frac{q^{n(n+1)/2}}{(q)_n}\sim \frac{1}{\sqrt{2}}\exp(\frac{\pi^2}{12t}+\frac{t}{24})\)
- Bailey's lemma
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\sum_{n=0}^{\infty}\beta_n\delta_{n}\)
\(\sum_{n=0}^{\infty}\alpha_n\gamma_{n}=\frac{(-q)_{\infty}}{(q)_{\infty}}\sum_{n=0}^{\infty}(-1)^{n}(q^{\frac{3n^2+n}{2}}-q^{\frac{3n^2+5n+2}{2}})=(-q)_{\infty}\) (오일러의 오각수정리(pentagonal number theorem) was used to verify this)
\(\sum_{n=0}^{\infty}\beta_n\delta_{n}=\sum_{n=0}^{\infty}\frac{q^{\frac{n(n+1)}{2}}}{(q)_{n}}\)
Bethe type equation (cyclotomic equation)
Let \(\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{ \prod_{j=1}^{r}(q^{c_j};q^{d_j})_n^{e_j}}=\sum_{N=0}^{\infty} a_N q^{N}\).
Then \(\prod_{j=1}^{r}(1-x^{d_j})^{e_j}=x^a\) has a unique root \(0<\mu<1\). We get
\(\log^2 a_N \sim 4N\sum_{j=1}^{r}\frac{e_j}{d_j}L(1-\mu^{d_j})\)
a=1,d=1,e=1
The equation becomes \(1-x=x\).
\(4L(\frac{1}{2})=\frac{1}{2}(\frac{2}{3}\pi^2)=\frac{1}{3}\pi^2\)
dilogarithm identity
\(L(\frac{1}{2})=\frac{1}{12}\pi^2\)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
articles
-
- Rogers-Ramanujan-Slater Type identities
- McLaughlin, 2008
- McLaughlin, 2008
- Further identities of the Rogers-Ramanujan type
- Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167
- Slater, L. J. (1952), Proceedings of the London Mathematical Society. Second Series 54: 147–167
- A New Proof of Rogers's Transformations of Infinite Series
- Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475
- Slater, L. J. (1952), Proc. London Math. Soc. 1951 s2-53: 460-475
-
- http://www.ams.org/mathscinet
- [1]http://www.zentralblatt-math.org/zmath/en/
- [2]http://arxiv.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/