"Harmonic oscillator in quantum mechanics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
21번째 줄: 21번째 줄:
 
<h5>creation and annhilation operators</h5>
 
<h5>creation and annhilation operators</h5>
  
 
+
<math>a =\sqrt{m\omega \over 2\hbar} \left(x + {i \over m \omega} p \right)</math>
 +
 
 +
<math>a^{\dagger} =\sqrt{m \omega \over 2\hbar} \left( x - {i \over m \omega} p \right)</math>
 +
 
 +
<math>H = \hbar \omega \left(a^{\dagger}a + 1/2\right)</math>
 +
 
 +
<math>\left[a , a^{\dagger} \right] = 1</math>
  
 
 
 
 
37번째 줄: 43번째 줄:
 
 
 
 
  
<h5>ㄴㅊ</h5>
+
<h5>Schrodinger equation</h5>
 +
 
 +
*  
  
 
 
 
 

2010년 9월 22일 (수) 17:07 판

introduction

 

 

 

harmonic oscillator in classical mechanics
  • 고전역학에서의 조화진동자

 

 

 

creation and annhilation operators

\(a =\sqrt{m\omega \over 2\hbar} \left(x + {i \over m \omega} p \right)\)

\(a^{\dagger} =\sqrt{m \omega \over 2\hbar} \left( x - {i \over m \omega} p \right)\)

\(H = \hbar \omega \left(a^{\dagger}a + 1/2\right)\)

\(\left[a , a^{\dagger} \right] = 1\)

 

 

energy

According to quantum mechanics, a harmonic oscillator that vibrates with frequency \(\omega\) can have energy \(1/2\omega, (1 +1/2)\omega, (2 +1/2)\omega,(3 +1/2)\omega,\cdots\) in units where Planck’s constant equals 1. 

The lowest energy is not zero! It’s \(\omega/2\). This is called the ground state energy of the oscillator.

 

 

Schrodinger equation
  •  

 

 

path integral formulation

 

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links