"Harmonic oscillator in quantum mechanics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
22번째 줄: 22번째 줄:
 
<h5>creation and annhilation operators</h5>
 
<h5>creation and annhilation operators</h5>
  
<math>a =\sqrt{m\omega \over 2\hbar} \left(x + {i \over m \omega} p \right)</math>
+
*  the position operators and momentum operators satisfy the relation<br><math>[X,P] = X P - P X = i \hbar</math>[[Heisenberg group and Heisenberg algebra]]<br>
 
+
*  define operators as follows<br><math>a =\sqrt{m\omega \over 2\hbar} \left(x + {i \over m \omega} p \right)</math><br><math>a^{\dagger} =\sqrt{m \omega \over 2\hbar} \left( x - {i \over m \omega} p \right)</math><br>
<math>a^{\dagger} =\sqrt{m \omega \over 2\hbar} \left( x - {i \over m \omega} p \right)</math>
+
*  Hamiltonian<br><math>H = \hbar \omega \left(a^{\dagger}a + 1/2\right)</math><br>
 
+
*  Commutation relation<br><math>\left[a , a^{\dagger} \right] = 1</math><br><math>\left[ H, a \right]= - \hbar \omega a</math><br><math>\left[ H, a^\dagger \right] =  \hbar \omega a^\dagger</math><br>
<math>H = \hbar \omega \left(a^{\dagger}a + 1/2\right)</math>
 
 
 
<math>\left[a , a^{\dagger} \right] = 1</math>
 
  
 
 
 
 
34번째 줄: 31번째 줄:
 
 
 
 
  
<h5>energy</h5>
+
<h5>energy  eigenstates</h5>
  
a harmonic oscillator that vibrates with frequency <math>\omega</math> can have energy <math>1/2\omega, (1 +1/2)\omega, (2 +1/2)\omega,(3 +1/2)\omega,\cdots</math> in units where Planck’s constant equals 1<br>
+
Assume that Planck’s constant equals 1<br>
  
The lowest energy is not zero! It’s <math>\omega/2</math>. This is called the ground state energy of the oscillator.
+
*  a harmonic oscillator that vibrates with frequency <math>\omega</math> can have energy <math>1/2\omega, (1 +1/2)\omega, (2 +1/2)\omega,(3 +1/2)\omega,\cdots</math> in units where<br>
 +
The lowest energy is not zero! It’s <math>\omega/2</math>. This is called the ground state energy of the oscillator.<br>
  
 
 
 
 

2010년 9월 29일 (수) 02:40 판

introduction

 

 

 

harmonic oscillator in classical mechanics
  • 질량 m, frequency \(\omega\) 인 조화진동자
  • 해밀토니안
    \(H(p,q)=\frac{p^2}{2m}+\frac{m}{2}\omega^{2}q^2\)
  • 해밀턴 방정식
    \(\dot{q}=\partial H/\partial p=\frac{p}{m}\)
    \(\dot{p}=-\partial H/\partial q=-m\omega^{2}q\)
  • 운동방정식
    \(\ddot{x}=-\omega^{2} x\) 즉 \(\ddot{x}+\omega^{2} x=0\)

 

 

creation and annhilation operators
  • the position operators and momentum operators satisfy the relation
    \([X,P] = X P - P X = i \hbar\)Heisenberg group and Heisenberg algebra
  • define operators as follows
    \(a =\sqrt{m\omega \over 2\hbar} \left(x + {i \over m \omega} p \right)\)
    \(a^{\dagger} =\sqrt{m \omega \over 2\hbar} \left( x - {i \over m \omega} p \right)\)
  • Hamiltonian
    \(H = \hbar \omega \left(a^{\dagger}a + 1/2\right)\)
  • Commutation relation
    \(\left[a , a^{\dagger} \right] = 1\)
    \(\left[ H, a \right]= - \hbar \omega a\)
    \(\left[ H, a^\dagger \right] = \hbar \omega a^\dagger\)

 

 

energy  eigenstates
  • Assume that Planck’s constant equals 1
  • a harmonic oscillator that vibrates with frequency \(\omega\) can have energy \(1/2\omega, (1 +1/2)\omega, (2 +1/2)\omega,(3 +1/2)\omega,\cdots\) in units where
  • The lowest energy is not zero! It’s \(\omega/2\). This is called the ground state energy of the oscillator.

 

 

Schrodinger equation
  •  

 

 

path integral formulation

 

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

expositions

 

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links