"Einstein metrics and Ricci solitons"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) |
||
(다른 사용자 한 명의 중간 판 7개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
==introduction== | ==introduction== | ||
+ | * A Riemannian manifold <math>(M, g)</math> is called Einstein if it has constant Ricci curvature, i.e. <math>Ric_g=\kappa \cdot g</math> for some <math>\kappa\in \mathbb{R}</math> | ||
+ | * In local coordinates, | ||
+ | :<math> | ||
+ | R_{ab} = \kappa\,g_{ab} | ||
+ | </math> | ||
* Einstein manifolds, conformal Einstein manifolds and (generic and gradient) Ricci solitons | * Einstein manifolds, conformal Einstein manifolds and (generic and gradient) Ricci solitons | ||
− | * Ricci solitons on Finsler spaces | + | * Ricci solitons on Finsler spaces are a generalization of Einstein spaces, which can be considered as a solution to the Ricci flow on compact Finsler manifolds. |
+ | |||
+ | ==Einstein equation== | ||
+ | * In [[general relativity]], [[Einstein field equation]] with a [[cosmological constant]] Λ is | ||
+ | :<math>R_{ab} - \frac{1}{2}g_{ab}R + g_{ab}\Lambda = 8\pi T_{ab}, </math> | ||
+ | written in geometrized units with ''G'' = ''c'' = 1. | ||
+ | * The stress–energy tensor ''T''<sub>''ab''</sub> gives the matter and energy content of the underlying spacetime. | ||
+ | * In a vacuum (a region of spacetime with no matter) ''T''<sub>''ab''</sub> = 0, and one can rewrite Einstein's equation in the form (assuming ''n'' > 2): | ||
+ | :<math>R_{ab} = \frac{2\Lambda}{n-2}\,g_{ab}.</math> | ||
+ | * Therefore, vacuum solutions of Einstein's equation are (Lorentzian) Einstein manifolds with ''k'' proportional to the cosmological constant. | ||
+ | |||
+ | |||
+ | |||
+ | ==books== | ||
+ | * Besse, Arthur L. Einstein Manifolds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://link.springer.com/10.1007/978-3-540-74311-8. | ||
+ | |||
==expositions== | ==expositions== | ||
+ | * Wang, McKenzie Y. “Einstein Metrics from Symmetry and Bundle Constructions: A Sequel.” arXiv:1208.4736 [math], August 23, 2012. http://arxiv.org/abs/1208.4736. | ||
* Cao, Huai-Dong. 2009. “Recent Progress on Ricci Solitons.” arXiv:0908.2006 [math], August. http://arxiv.org/abs/0908.2006. | * Cao, Huai-Dong. 2009. “Recent Progress on Ricci Solitons.” arXiv:0908.2006 [math], August. http://arxiv.org/abs/0908.2006. | ||
==articles== | ==articles== | ||
+ | * John Lott, Patrick Wilson, Note on asymptotically conical expanding Ricci solitons, arXiv:1605.02128 [math.DG], May 07 2016, http://arxiv.org/abs/1605.02128 | ||
+ | * Grama, Lino, and Ricardo Miranda Martins. “A Numerical Treatment to the Problem of the Quantity of Einstein Metrics on Flag Manifolds.” arXiv:1601.06972 [math-Ph], January 26, 2016. http://arxiv.org/abs/1601.06972. | ||
+ | * Arvanitoyeorgos, Andreas, Yusuke Sakane, and Marina Statha. “New Einstein Metrics on the Lie Group <math>SO(n)</math> Which Are Not Naturally Reductive.” arXiv:1511.08849 [math], November 25, 2015. http://arxiv.org/abs/1511.08849. | ||
+ | * Stolarski, Maxwell. “Steady Ricci Solitons on Complex Line Bundles.” arXiv:1511.04087 [math], November 12, 2015. http://arxiv.org/abs/1511.04087. | ||
* Bidabad, Behroz, and Mohamad Yar Ahmadi. “On Compact Ricci Solitons in Finsler Geometry.” arXiv:1508.02148 [math], August 10, 2015. http://arxiv.org/abs/1508.02148. | * Bidabad, Behroz, and Mohamad Yar Ahmadi. “On Compact Ricci Solitons in Finsler Geometry.” arXiv:1508.02148 [math], August 10, 2015. http://arxiv.org/abs/1508.02148. | ||
* Nurowski, Pawel, and Matthew Randall. “Generalised Ricci Solitons.” arXiv:1409.4179 [gr-Qc], September 15, 2014. http://arxiv.org/abs/1409.4179. | * Nurowski, Pawel, and Matthew Randall. “Generalised Ricci Solitons.” arXiv:1409.4179 [gr-Qc], September 15, 2014. http://arxiv.org/abs/1409.4179. | ||
* Fernandez-Lopez, Manuel, and Eduardo Garcia-Rio. “On Gradient Ricci Solitons with Constant Scalar Curvature.” arXiv:1409.3359 [math], September 11, 2014. http://arxiv.org/abs/1409.3359. | * Fernandez-Lopez, Manuel, and Eduardo Garcia-Rio. “On Gradient Ricci Solitons with Constant Scalar Curvature.” arXiv:1409.3359 [math], September 11, 2014. http://arxiv.org/abs/1409.3359. | ||
* Catino, Giovanni, Paolo Mastrolia, Dario D. Monticelli, and Marco Rigoli. 2014. “Conformal Ricci Solitons and Related Integrability Conditions.” arXiv:1405.3169 [math], May. http://arxiv.org/abs/1405.3169. | * Catino, Giovanni, Paolo Mastrolia, Dario D. Monticelli, and Marco Rigoli. 2014. “Conformal Ricci Solitons and Related Integrability Conditions.” arXiv:1405.3169 [math], May. http://arxiv.org/abs/1405.3169. | ||
+ | [[분류:migrate]] |
2020년 11월 13일 (금) 07:22 기준 최신판
introduction
- A Riemannian manifold \((M, g)\) is called Einstein if it has constant Ricci curvature, i.e. \(Ric_g=\kappa \cdot g\) for some \(\kappa\in \mathbb{R}\)
- In local coordinates,
\[ R_{ab} = \kappa\,g_{ab} \]
- Einstein manifolds, conformal Einstein manifolds and (generic and gradient) Ricci solitons
- Ricci solitons on Finsler spaces are a generalization of Einstein spaces, which can be considered as a solution to the Ricci flow on compact Finsler manifolds.
Einstein equation
- In general relativity, Einstein field equation with a cosmological constant Λ is
\[R_{ab} - \frac{1}{2}g_{ab}R + g_{ab}\Lambda = 8\pi T_{ab}, \] written in geometrized units with G = c = 1.
- The stress–energy tensor Tab gives the matter and energy content of the underlying spacetime.
- In a vacuum (a region of spacetime with no matter) Tab = 0, and one can rewrite Einstein's equation in the form (assuming n > 2):
\[R_{ab} = \frac{2\Lambda}{n-2}\,g_{ab}.\]
- Therefore, vacuum solutions of Einstein's equation are (Lorentzian) Einstein manifolds with k proportional to the cosmological constant.
books
- Besse, Arthur L. Einstein Manifolds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://link.springer.com/10.1007/978-3-540-74311-8.
expositions
- Wang, McKenzie Y. “Einstein Metrics from Symmetry and Bundle Constructions: A Sequel.” arXiv:1208.4736 [math], August 23, 2012. http://arxiv.org/abs/1208.4736.
- Cao, Huai-Dong. 2009. “Recent Progress on Ricci Solitons.” arXiv:0908.2006 [math], August. http://arxiv.org/abs/0908.2006.
articles
- John Lott, Patrick Wilson, Note on asymptotically conical expanding Ricci solitons, arXiv:1605.02128 [math.DG], May 07 2016, http://arxiv.org/abs/1605.02128
- Grama, Lino, and Ricardo Miranda Martins. “A Numerical Treatment to the Problem of the Quantity of Einstein Metrics on Flag Manifolds.” arXiv:1601.06972 [math-Ph], January 26, 2016. http://arxiv.org/abs/1601.06972.
- Arvanitoyeorgos, Andreas, Yusuke Sakane, and Marina Statha. “New Einstein Metrics on the Lie Group \(SO(n)\) Which Are Not Naturally Reductive.” arXiv:1511.08849 [math], November 25, 2015. http://arxiv.org/abs/1511.08849.
- Stolarski, Maxwell. “Steady Ricci Solitons on Complex Line Bundles.” arXiv:1511.04087 [math], November 12, 2015. http://arxiv.org/abs/1511.04087.
- Bidabad, Behroz, and Mohamad Yar Ahmadi. “On Compact Ricci Solitons in Finsler Geometry.” arXiv:1508.02148 [math], August 10, 2015. http://arxiv.org/abs/1508.02148.
- Nurowski, Pawel, and Matthew Randall. “Generalised Ricci Solitons.” arXiv:1409.4179 [gr-Qc], September 15, 2014. http://arxiv.org/abs/1409.4179.
- Fernandez-Lopez, Manuel, and Eduardo Garcia-Rio. “On Gradient Ricci Solitons with Constant Scalar Curvature.” arXiv:1409.3359 [math], September 11, 2014. http://arxiv.org/abs/1409.3359.
- Catino, Giovanni, Paolo Mastrolia, Dario D. Monticelli, and Marco Rigoli. 2014. “Conformal Ricci Solitons and Related Integrability Conditions.” arXiv:1405.3169 [math], May. http://arxiv.org/abs/1405.3169.