"BGG reciprocity"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 (새 문서: * Bennett, Matthew, Arkady Berenstein, Vyjayanthi Chari, Anton Khoroshkin, and Sergey Loktev. ‘Macdonald Polynomials and BGG Reciprocity for Current Algebras’. Selecta Mathematica...) |
imported>Pythagoras0 |
||
(같은 사용자의 중간 판 2개는 보이지 않습니다) | |||
1번째 줄: | 1번째 줄: | ||
+ | ==articles== | ||
+ | * Chari, Vyjayanthi, and Bogdan Ion. “BGG Reciprocity for Current Algebras.” Compositio Mathematica 151, no. 07 (July 2015): 1265–87. doi:10.1112/S0010437X14007908. | ||
* Bennett, Matthew, Arkady Berenstein, Vyjayanthi Chari, Anton Khoroshkin, and Sergey Loktev. ‘Macdonald Polynomials and BGG Reciprocity for Current Algebras’. Selecta Mathematica 20, no. 2 (26 September 2013): 585–607. doi:10.1007/s00029-013-0141-7. | * Bennett, Matthew, Arkady Berenstein, Vyjayanthi Chari, Anton Khoroshkin, and Sergey Loktev. ‘Macdonald Polynomials and BGG Reciprocity for Current Algebras’. Selecta Mathematica 20, no. 2 (26 September 2013): 585–607. doi:10.1007/s00029-013-0141-7. | ||
* Irving, Ronald S. ‘BGG Algebras and the BGG Reciprocity Principle’. Journal of Algebra 135, no. 2 (December 1990): 363–80. doi:10.1016/0021-8693(90)90294-X. | * Irving, Ronald S. ‘BGG Algebras and the BGG Reciprocity Principle’. Journal of Algebra 135, no. 2 (December 1990): 363–80. doi:10.1016/0021-8693(90)90294-X. | ||
+ | |||
+ | |||
+ | [[분류:Lie theory]] | ||
+ | [[분류:migrate]] |
2020년 11월 13일 (금) 06:51 기준 최신판
articles
- Chari, Vyjayanthi, and Bogdan Ion. “BGG Reciprocity for Current Algebras.” Compositio Mathematica 151, no. 07 (July 2015): 1265–87. doi:10.1112/S0010437X14007908.
- Bennett, Matthew, Arkady Berenstein, Vyjayanthi Chari, Anton Khoroshkin, and Sergey Loktev. ‘Macdonald Polynomials and BGG Reciprocity for Current Algebras’. Selecta Mathematica 20, no. 2 (26 September 2013): 585–607. doi:10.1007/s00029-013-0141-7.
- Irving, Ronald S. ‘BGG Algebras and the BGG Reciprocity Principle’. Journal of Algebra 135, no. 2 (December 1990): 363–80. doi:10.1016/0021-8693(90)90294-X.