"감마함수의 비와 라마누잔의 연분수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
7번째 줄: | 7번째 줄: | ||
<h5>개요</h5> | <h5>개요</h5> | ||
− | + | * 감마함수의 비를 다음과 같은 연분수로 표현 | |
<math>\frac{\Gamma \left(\frac{1}{4} (-n+x+1)\right) \Gamma \left(\frac{1}{4} (n+x+1)\right)}{\Gamma \left(\frac{1}{4} (-n+x+3)\right) \Gamma \left(\frac{1}{4} (n+x+3)\right)}=\cfrac{4}{x-\cfrac{n^2-1}{2 x-\cfrac{n^2-9}{2 x-\cfrac{n^2-25}{2 x-\cfrac{n^2-49}{2 x-\cfrac{n^2-81}{2 x-\cfrac{n^2-121}{2 x-\cfrac{n^2-169}{2 x-\cfrac{n^2-225}{2 x-\cfrac{n^2-289}{2 x-\cdots}}}}}}}}}}</math> | <math>\frac{\Gamma \left(\frac{1}{4} (-n+x+1)\right) \Gamma \left(\frac{1}{4} (n+x+1)\right)}{\Gamma \left(\frac{1}{4} (-n+x+3)\right) \Gamma \left(\frac{1}{4} (n+x+3)\right)}=\cfrac{4}{x-\cfrac{n^2-1}{2 x-\cfrac{n^2-9}{2 x-\cfrac{n^2-25}{2 x-\cfrac{n^2-49}{2 x-\cfrac{n^2-81}{2 x-\cfrac{n^2-121}{2 x-\cfrac{n^2-169}{2 x-\cfrac{n^2-225}{2 x-\cfrac{n^2-289}{2 x-\cdots}}}}}}}}}}</math> | ||
35번째 줄: | 35번째 줄: | ||
<h5>관련된 항목들</h5> | <h5>관련된 항목들</h5> | ||
+ | |||
+ | * [[원주율과 연분수 Brouncker 의 공식|원주율과 연분수]] | ||
2012년 4월 28일 (토) 15:13 판
이 항목의 수학노트 원문주소
개요
- 감마함수의 비를 다음과 같은 연분수로 표현
\(\frac{\Gamma \left(\frac{1}{4} (-n+x+1)\right) \Gamma \left(\frac{1}{4} (n+x+1)\right)}{\Gamma \left(\frac{1}{4} (-n+x+3)\right) \Gamma \left(\frac{1}{4} (n+x+3)\right)}=\cfrac{4}{x-\cfrac{n^2-1}{2 x-\cfrac{n^2-9}{2 x-\cfrac{n^2-25}{2 x-\cfrac{n^2-49}{2 x-\cfrac{n^2-81}{2 x-\cfrac{n^2-121}{2 x-\cfrac{n^2-169}{2 x-\cfrac{n^2-225}{2 x-\cfrac{n^2-289}{2 x-\cdots}}}}}}}}}}\)
역사
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문