"Y-system and functional dilogarithm identities"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
==introduction</h5>
+
==introduction==
  
 
* [http://pythagoras0.springnote.com/pages/4682477 체비셰프 다항식]<br><math>U_n(x)^2=1+U_{n-1}(x)U_{n+1}(x)</math><br>
 
* [http://pythagoras0.springnote.com/pages/4682477 체비셰프 다항식]<br><math>U_n(x)^2=1+U_{n-1}(x)U_{n+1}(x)</math><br>
26번째 줄: 26번째 줄:
 
 
 
 
  
==total positivity</h5>
+
==total positivity==
  
 
* <math>r_{i-1}r_{i+1}=r_i^2+1</math>
 
* <math>r_{i-1}r_{i+1}=r_i^2+1</math>
38번째 줄: 38번째 줄:
 
 
 
 
  
==relation to 5-term relation</h5>
+
==relation to 5-term relation==
  
 
* [http://pythagoras0.springnote.com/pages/5956565 5항 관계식 (5-term relation)]<br><math>1-x_{i}=x_{i-1}x_{i+1}</math><br>
 
* [http://pythagoras0.springnote.com/pages/5956565 5항 관계식 (5-term relation)]<br><math>1-x_{i}=x_{i-1}x_{i+1}</math><br>
46번째 줄: 46번째 줄:
 
 
 
 
  
==five-term relation of dilogarithm</h5>
+
==five-term relation of dilogarithm==
  
 
* [http://pythagoras0.springnote.com/pages/5956565 5항 관계식 (5-term relation)]<br>
 
* [http://pythagoras0.springnote.com/pages/5956565 5항 관계식 (5-term relation)]<br>
62번째 줄: 62번째 줄:
 
 
 
 
  
==rank 2 example</h5>
+
==rank 2 example==
  
 
* [[rank 2 cluster algebra]]
 
* [[rank 2 cluster algebra]]
82번째 줄: 82번째 줄:
 
 
 
 
  
==history</h5>
+
==history==
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
90번째 줄: 90번째 줄:
 
 
 
 
  
==related items</h5>
+
==related items==
  
 
* [[cluster algebra]]
 
* [[cluster algebra]]
103번째 줄: 103번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==
  
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
114번째 줄: 114번째 줄:
 
 
 
 
  
==books</h5>
+
==books==
  
 
 
 
 
126번째 줄: 126번째 줄:
 
 
 
 
  
==expositions</h5>
+
==expositions==
  
 
* [http://www.math.nagoya-u.ac.jp/%7Enakanisi/research/10IPMU.pdf Dilogarithm identities in conformal field theory and cluster algebras]
 
* [http://www.math.nagoya-u.ac.jp/%7Enakanisi/research/10IPMU.pdf Dilogarithm identities in conformal field theory and cluster algebras]
135번째 줄: 135번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==
  
 
* [http://arxiv.org/abs/1006.0632 Periodic cluster algebras and dilogarithm identities] Tomoki Nakanishi, 2010
 
* [http://arxiv.org/abs/1006.0632 Periodic cluster algebras and dilogarithm identities] Tomoki Nakanishi, 2010
160번째 줄: 160번째 줄:
 
 
 
 
  
==question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)==
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
169번째 줄: 169번째 줄:
 
 
 
 
  
==blogs</h5>
+
==blogs==
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
180번째 줄: 180번째 줄:
 
 
 
 
  
==experts on the field</h5>
+
==experts on the field==
  
 
* http://arxiv.org/
 
* http://arxiv.org/
188번째 줄: 188번째 줄:
 
 
 
 
  
==links</h5>
+
==links==
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]

2012년 10월 28일 (일) 15:25 판

introduction

 

  1. A := RecurrenceTable[{a[n] a[n - 2] + 1 == a[n - 1]^2, a[1] == x,
       a[2] == y}, a, {n, 10}]
    Simplify[A]
  • Laurent phenomenon is true
  • total positivity is broken
  • 정오각형의 경우
  • \(r_i^2=1+r_{i-1}r_{i+1}\), \(r_0=1,r_3=1\)
  • 3가지 점화식의 해가 존재
  • \(\{1,-1,0,1\}\), \(\{1,\frac{-\sqrt{5}+1}{2},\frac{-\sqrt{5}+1}{2},1 \}\) , \(\{1,\frac{\sqrt{5}+1}{2},\frac{\sqrt{5}+1}{2},1 \}\)

 

  1. A := RecurrenceTable[{a[n] a[n - 2] + 1 == a[n - 1]^2, a[1] == 1,
       a[2] == 2 y}, a, {n, 10}]
    Simplify[A]
    NSolve[-4 y + 8 y^3 == 1, y]
    {1, 2 y, -1 + 4 y^2, -4 y + 8 y^3,
       1 - 12 y^2 +
        16 y^4} /. {{y -> -0.5`}, {y -> -0.30901699437494745`}, {y ->
         0.8090169943749475`}} // TableForm

 

 

 

total positivity

  • \(r_{i-1}r_{i+1}=r_i^2+1\)
  1. A := RecurrenceTable[{a[n] a[n - 2] - 1 == a[n - 1]^2, a[1] == x,
       a[2] == y}, a, {n, 10}]
    Simplify[A]

 

 

relation to 5-term relation

 

 

five-term relation of dilogarithm

 

  1. f[{x_, y_, z_, w_}] := Simplify[(x - z)/(x - w)*(y - w)/(y - z)]
    A := Permutations[{0, 1, w, z}]
    Table[Limit[f[Ai], w -> \[Infinity]], {i, 24}]
    B := Subsets[{0, x*y, 1, y, z}, {4}]
    g[i_] := Table[
      Limit[f[n], z -> \[Infinity]], {n, Permutations[Bi]}]
    Table[f[Bi], {i, 1, 5}]
    Table[g[i], {i, 5}]

 

 

rank 2 example

\(y_{m-1}y_{m+1}=y_m+1\)

Start with two variables \(y_1,y_2\).

\(y_3y_1=y_2+1\). so \(y_3=\frac{y_2+1}{y_1}\)

\(y_2y_4=y_3+1 \)implies \(y_4=\frac{y_3+1}{y_2}=\frac{y_1+y_2+1}{y_1y_2}\)

\(y_3y_5=y_4+1\) implies \(y_5=\frac{y_4+1}{y_3}= \frac{y_1+1}{y_2}\) we are getting Laurent polynomials

\(y_4y_6=y_5\) implies \(y_6=\frac{y_5+1}{y_4}= \frac{\frac{y_1+1}{y_2}+1}{\frac{y_1+y_2+1}{y_1y_2}}=\frac{y_1(y_1+1)+y_1y_2}{y_1+y_2+1}=y_1\)

 

 

history

 

 

related items

 

 

encyclopedia==    

books

 

 

 

expositions

 

 

articles==    

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links