"Sphere Packings, Lattices and Groups"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
6번째 줄: | 6번째 줄: | ||
==chapter 7== | ==chapter 7== | ||
− | * type I = self-dual | + | * type I = self-dual, $\operatorname{wt}(C)\equiv 0 \mod 2$ and there exists $C\in \mathcal{C}$ such that $\operatorname{wt}(C)\equiv 2 \mod 4$ |
− | * type II = even | + | * type II = even, self-dual |
===type I codes=== | ===type I codes=== | ||
* {{수학노트|url=맥윌리엄스_항등식_(MacWilliams_Identity)}} | * {{수학노트|url=맥윌리엄스_항등식_(MacWilliams_Identity)}} |
2014년 6월 3일 (화) 03:32 판
some conventions
- $q=e^{\pi i z}$
chapter 2
- section 2.4 Integral lattices
chapter 7
- type I = self-dual, $\operatorname{wt}(C)\equiv 0 \mod 2$ and there exists $C\in \mathcal{C}$ such that $\operatorname{wt}(C)\equiv 2 \mod 4$
- type II = even, self-dual
type I codes