"Various concepts of limit in statistical physics"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
13번째 줄: | 13번째 줄: | ||
** a : lattice spacing | ** a : lattice spacing | ||
** V : volume | ** V : volume | ||
− | * scaling limit | + | * scaling limit<br> |
+ | ** sending the lattice spacing a to zero, , while keeping the volume V=Na constant | ||
* continuum limit<br> | * continuum limit<br> | ||
** sending the lattice spacing a to zero, and the number N of sites to infinity, while keeping the volume V=Na constant<br> | ** sending the lattice spacing a to zero, and the number N of sites to infinity, while keeping the volume V=Na constant<br> | ||
* thermodynamic limit<br> | * thermodynamic limit<br> | ||
− | ** the | + | ** a model is taken to the thermodynamic limit by increasing the volume together with the particle number so that the average particle number density remains constant.<br> |
− | ** | + | ** http://en.wikipedia.org/wiki/Thermodynamic_limit<br> |
* infrared limit<br> | * infrared limit<br> | ||
** sending V to infinity, while keeping a constant<br> | ** sending V to infinity, while keeping a constant<br> | ||
35번째 줄: | 36번째 줄: | ||
− | <h5> | + | <h5>memo</h5> |
+ | |||
+ | # Glimm, J., Jaffe, A.: [http://www.springerlink.com/content/t413601r24427883/ Particles and scaling for lattice fields and Ising models]. Commun. Math. Phys.51, 1 (1976)<br> # Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys.74, 119 (1980)<br> # Fröhlich, J., Spencer, T.: Some recent rigorous results in the theory of phase transitions and critical phenomena. Séminaire Bourbaki No. 586 (February 1982)<br> # Sinai, Ya.G.: Mathematical foundations of the renormalization group method in statistical physics. In: Mathematical problems in theoretical physics. Dell'Antonio, G., Doplicher, S., Jona-Lasinio, G. (eds.). Lectures Notes in Physics, Vol. 80. Berlin, Heidelberg, New York: Springer 1978 | ||
2010년 8월 19일 (목) 21:32 판
introduction
concept of limit
- notations
- N : number of sites
- a : lattice spacing
- V : volume
- scaling limit
- sending the lattice spacing a to zero, , while keeping the volume V=Na constant
- continuum limit
- sending the lattice spacing a to zero, and the number N of sites to infinity, while keeping the volume V=Na constant
- sending the lattice spacing a to zero, and the number N of sites to infinity, while keeping the volume V=Na constant
- thermodynamic limit
- a model is taken to the thermodynamic limit by increasing the volume together with the particle number so that the average particle number density remains constant.
- http://en.wikipedia.org/wiki/Thermodynamic_limit
- a model is taken to the thermodynamic limit by increasing the volume together with the particle number so that the average particle number density remains constant.
- infrared limit
- sending V to infinity, while keeping a constant
- sending V to infinity, while keeping a constant
- ultraviolet limit
The c-theorem implies that the infra-red limit, where the scale goes to innity, and the ultra-violet limit, where the scale vanishes, are fixed points of the renormalisation group.
http://iopscience.iop.org/1126-6708/2000/03/008/pdf/1126-6708_2000_03_008.pdf
memo
- Glimm, J., Jaffe, A.: Particles and scaling for lattice fields and Ising models. Commun. Math. Phys.51, 1 (1976)
# Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys.74, 119 (1980)
# Fröhlich, J., Spencer, T.: Some recent rigorous results in the theory of phase transitions and critical phenomena. Séminaire Bourbaki No. 586 (February 1982)
# Sinai, Ya.G.: Mathematical foundations of the renormalization group method in statistical physics. In: Mathematical problems in theoretical physics. Dell'Antonio, G., Doplicher, S., Jona-Lasinio, G. (eds.). Lectures Notes in Physics, Vol. 80. Berlin, Heidelberg, New York: Springer 1978
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field