"Various concepts of limit in statistical physics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
13번째 줄: 13번째 줄:
 
** a : lattice spacing
 
** a : lattice spacing
 
** V : volume
 
** V : volume
*  scaling limit<br>
 
** sending the lattice spacing a to zero, , while keeping the volume V=Na constant
 
 
*  continuum limit<br>
 
*  continuum limit<br>
 
**  sending the lattice spacing a to zero, and the number N of sites to infinity, while keeping the volume V=Na constant<br>
 
**  sending the lattice spacing a to zero, and the number N of sites to infinity, while keeping the volume V=Na constant<br>
 +
 +
*  scaling limit<br>
 +
** sending the lattice spacing a to zero, while keeping the volume V and the correlation length fixed
 +
 
*  thermodynamic limit<br>
 
*  thermodynamic limit<br>
 
**  a model is taken to the thermodynamic limit by increasing the volume together with the particle number so that the average particle number density remains constant.<br>
 
**  a model is taken to the thermodynamic limit by increasing the volume together with the particle number so that the average particle number density remains constant.<br>
 
** http://en.wikipedia.org/wiki/Thermodynamic_limit<br>
 
** http://en.wikipedia.org/wiki/Thermodynamic_limit<br>
 
*  infrared limit<br>
 
*  infrared limit<br>
**  sending V to infinity, while keeping a constant<br>
+
**  sending V to infinity, while keeping the lattice spacing a constant<br>
 
*  ultraviolet limit<br>
 
*  ultraviolet limit<br>
 +
**  ??<br>
 +
 +
*  
  
 
 
 
 
38번째 줄: 43번째 줄:
 
<h5>memo</h5>
 
<h5>memo</h5>
  
# Glimm, J., Jaffe, A.: [http://www.springerlink.com/content/t413601r24427883/ Particles and scaling for lattice fields and Ising models]. Commun. Math. Phys.51, 1 (1976)<br> # Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys.74, 119 (1980)<br> # Fröhlich, J., Spencer, T.: Some recent rigorous results in the theory of phase transitions and critical phenomena. Séminaire Bourbaki No. 586 (February 1982)<br> # Sinai, Ya.G.: Mathematical foundations of the renormalization group method in statistical physics. In: Mathematical problems in theoretical physics. Dell'Antonio, G., Doplicher, S., Jona-Lasinio, G. (eds.). Lectures Notes in Physics, Vol. 80. Berlin, Heidelberg, New York: Springer 1978
+
* Glimm, J., Jaffe, A.: [http://www.springerlink.com/content/t413601r24427883/ Particles and scaling for lattice fields and Ising models]. Commun. Math. Phys.51, 1 (1976)
 +
* Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys.74, 119 (1980)
 +
* Fröhlich, J., Spencer, T.: Some recent rigorous results in the theory of phase transitions and critical phenomena. Séminaire Bourbaki No. 586 (February 1982)
 +
* Sinai, Ya.G.: Mathematical foundations of the renormalization group method in statistical physics. In: Mathematical problems in theoretical physics. Dell'Antonio, G., Doplicher, S., Jona-Lasinio, G. (eds.). Lectures Notes in Physics, Vol. 80. Berlin, Heidelberg, New York: Springer 1978
  
 
 
 
 

2010년 8월 19일 (목) 21:54 판

introduction

 

 

 

concept of limit
  • notations
    • N : number of sites
    • a : lattice spacing
    • V : volume
  • continuum limit
    • sending the lattice spacing a to zero, and the number N of sites to infinity, while keeping the volume V=Na constant
  • scaling limit
    • sending the lattice spacing a to zero, while keeping the volume V and the correlation length fixed
  • thermodynamic limit
  • infrared limit
    • sending V to infinity, while keeping the lattice spacing a constant
  • ultraviolet limit
    • ??
  •  

 

 

The c-theorem implies that the infra-red limit, where the scale goes to innity, and the ultra-violet limit, where the scale vanishes, are fixed points of the renormalisation group.

http://iopscience.iop.org/1126-6708/2000/03/008/pdf/1126-6708_2000_03_008.pdf

 

 

memo
  • Glimm, J., Jaffe, A.: Particles and scaling for lattice fields and Ising models. Commun. Math. Phys.51, 1 (1976)
  • Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys.74, 119 (1980)
  • Fröhlich, J., Spencer, T.: Some recent rigorous results in the theory of phase transitions and critical phenomena. Séminaire Bourbaki No. 586 (February 1982)
  • Sinai, Ya.G.: Mathematical foundations of the renormalization group method in statistical physics. In: Mathematical problems in theoretical physics. Dell'Antonio, G., Doplicher, S., Jona-Lasinio, G. (eds.). Lectures Notes in Physics, Vol. 80. Berlin, Heidelberg, New York: Springer 1978

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links