"Various concepts of limit in statistical physics"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
|||
1번째 줄: | 1번째 줄: | ||
− | + | ==introduction</h5> | |
43번째 줄: | 43번째 줄: | ||
− | + | ==memo</h5> | |
* Glimm, J., Jaffe, A.: [http://www.springerlink.com/content/t413601r24427883/ Particles and scaling for lattice fields and Ising models]. Commun. Math. Phys.51, 1 (1976) | * Glimm, J., Jaffe, A.: [http://www.springerlink.com/content/t413601r24427883/ Particles and scaling for lattice fields and Ising models]. Commun. Math. Phys.51, 1 (1976) | ||
56번째 줄: | 56번째 줄: | ||
− | + | ==history</h5> | |
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
64번째 줄: | 64번째 줄: | ||
− | + | ==related items</h5> | |
81번째 줄: | 81번째 줄: | ||
− | + | ==books</h5> | |
110번째 줄: | 110번째 줄: | ||
− | + | ==question and answers(Math Overflow)</h5> | |
* http://mathoverflow.net/search?q= | * http://mathoverflow.net/search?q= | ||
119번째 줄: | 119번째 줄: | ||
− | + | ==blogs</h5> | |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> | ||
130번째 줄: | 130번째 줄: | ||
− | + | ==experts on the field</h5> | |
* http://arxiv.org/ | * http://arxiv.org/ | ||
138번째 줄: | 138번째 줄: | ||
− | + | ==links</h5> | |
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] |
2012년 10월 28일 (일) 15:06 판
==introduction
concept of limit
- notations
- N : number of sites
- a : lattice spacing
- V : volume
- continuum limit
- used in the lattice model
- sending the lattice spacing a to zero, and the number N of sites to infinity, while keeping the volume V=Na constant
- used in the lattice model
- scaling limit
- sounds similar to continuum limit
- sending the lattice spacing a to zero, while keeping the volume V and the correlation length fixed
- thermodynamic limit
- increasing the volume together with the particle number so that the average particle number density remains constant.
- http://en.wikipedia.org/wiki/Thermodynamic_limit
- increasing the volume together with the particle number so that the average particle number density remains constant.
- infrared limit
- sending V to infinity, while keeping the lattice spacing a constant
- sending V to infinity, while keeping the lattice spacing a constant
- ultraviolet limit
- ??
- ??
The c-theorem implies that the infra-red limit, where the scale goes to innity, and the ultra-violet limit, where the scale vanishes, are fixed points of the renormalisation group.
http://iopscience.iop.org/1126-6708/2000/03/008/pdf/1126-6708_2000_03_008.pdf
==memo
- Glimm, J., Jaffe, A.: Particles and scaling for lattice fields and Ising models. Commun. Math. Phys.51, 1 (1976)
- Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys.74, 119 (1980)
- Fröhlich, J., Spencer, T.: Some recent rigorous results in the theory of phase transitions and critical phenomena. Séminaire Bourbaki No. 586 (February 1982)
- Sinai, Ya.G.: Mathematical foundations of the renormalization group method in statistical physics. In: Mathematical problems in theoretical physics. Dell'Antonio, G., Doplicher, S., Jona-Lasinio, G. (eds.). Lectures Notes in Physics, Vol. 80. Berlin, Heidelberg, New York: Springer 1978
==history
==related items
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
==books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
==question and answers(Math Overflow)
==blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
==experts on the field
==links