"Various concepts of limit in statistical physics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction</h5>
  
 
 
 
 
43번째 줄: 43번째 줄:
 
 
 
 
  
<h5>memo</h5>
+
==memo</h5>
  
 
* Glimm, J., Jaffe, A.: [http://www.springerlink.com/content/t413601r24427883/ Particles and scaling for lattice fields and Ising models]. Commun. Math. Phys.51, 1 (1976)
 
* Glimm, J., Jaffe, A.: [http://www.springerlink.com/content/t413601r24427883/ Particles and scaling for lattice fields and Ising models]. Commun. Math. Phys.51, 1 (1976)
56번째 줄: 56번째 줄:
 
 
 
 
  
<h5>history</h5>
+
==history</h5>
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
64번째 줄: 64번째 줄:
 
 
 
 
  
<h5>related items</h5>
+
==related items</h5>
  
 
 
 
 
81번째 줄: 81번째 줄:
 
 
 
 
  
<h5>books</h5>
+
==books</h5>
  
 
 
 
 
110번째 줄: 110번째 줄:
 
 
 
 
  
<h5>question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)</h5>
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
119번째 줄: 119번째 줄:
 
 
 
 
  
<h5>blogs</h5>
+
==blogs</h5>
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
130번째 줄: 130번째 줄:
 
 
 
 
  
<h5>experts on the field</h5>
+
==experts on the field</h5>
  
 
* http://arxiv.org/
 
* http://arxiv.org/
138번째 줄: 138번째 줄:
 
 
 
 
  
<h5>links</h5>
+
==links</h5>
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]

2012년 10월 28일 (일) 15:06 판

==introduction

 

 

 

concept of limit
  • notations
    • N : number of sites
    • a : lattice spacing
    • V : volume
  • continuum limit
    • used in the lattice model
    • sending the lattice spacing a to zero, and the number N of sites to infinity, while keeping the volume V=Na constant
  • scaling limit
    • sounds similar to continuum limit
    • sending the lattice spacing a to zero, while keeping the volume V and the correlation length fixed
  • thermodynamic limit
  • infrared limit
    • sending V to infinity, while keeping the lattice spacing a constant
  • ultraviolet limit
    • ??
  •  

 

 

The c-theorem implies that the infra-red limit, where the scale goes to innity, and the ultra-violet limit, where the scale vanishes, are fixed points of the renormalisation group.

http://iopscience.iop.org/1126-6708/2000/03/008/pdf/1126-6708_2000_03_008.pdf

 

 

==memo

  • Glimm, J., Jaffe, A.: Particles and scaling for lattice fields and Ising models. Commun. Math. Phys.51, 1 (1976)
  • Newman, C.M.: Normal fluctuations and the FKG inequalities. Commun. Math. Phys.74, 119 (1980)
  • Fröhlich, J., Spencer, T.: Some recent rigorous results in the theory of phase transitions and critical phenomena. Séminaire Bourbaki No. 586 (February 1982)
  • Sinai, Ya.G.: Mathematical foundations of the renormalization group method in statistical physics. In: Mathematical problems in theoretical physics. Dell'Antonio, G., Doplicher, S., Jona-Lasinio, G. (eds.). Lectures Notes in Physics, Vol. 80. Berlin, Heidelberg, New York: Springer 1978

 

 

 

==history

 

 

==related items

 

 

encyclopedia

 

 

==books

 

 

 

articles

 

 

 

==question and answers(Math Overflow)

 

 

==blogs

 

 

==experts on the field

 

 

==links