"Hirota bilinear method"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 이름을 Hirota bilinear method로 바꾸었습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
− | <h5 | + | <h5>introduction</h5> |
+ | |||
+ | Advantages of the bilinear formalism:<br> • Multisoliton solutions easy to construct.<br> • The dependent variables are usually tau-functions, with good properties.<br> • Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)<br> • Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables. | ||
+ | |||
+ | * http://mathworld.wolfram.com/HirotaEquation.html | ||
− | + | * [http://front.math.ucdavis.edu/0905.3776 Integrable deformations of CFTs and the discrete Hirota equations]<br> | |
+ | ** Werner Nahm, Sinéad Keegan, 2009<br> | ||
+ | |||
+ | |||
+ | |||
+ | * | ||
+ | |||
+ | |||
+ | |||
+ | <h5>history</h5> | ||
* http://www.google.com/search?hl=en&tbs=tl:1&q= | * http://www.google.com/search?hl=en&tbs=tl:1&q= | ||
13번째 줄: | 26번째 줄: | ||
− | <h5 | + | <h5>related items</h5> |
19번째 줄: | 32번째 줄: | ||
− | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5> | |
− | |||
− | |||
− | |||
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
− | * http:// | + | * http://www.scholarpedia.org/ |
+ | * [http://eom.springer.de/ http://eom.springer.de] | ||
+ | * http://www.proofwiki.org/wiki/ | ||
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]]) | * Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]]) | ||
32번째 줄: | 44번째 줄: | ||
− | <h5 | + | <h5>books</h5> |
+ | |||
+ | |||
+ | |||
+ | * [[2011년 books and articles]] | ||
+ | * http://library.nu/search?q= | ||
+ | * http://library.nu/search?q= | ||
+ | |||
+ | |||
− | + | <h5>expositions</h5> | |
− | |||
− | |||
− | |||
− | [ | + | * [http://users.utu.fi/hietarin/Bangalore.pdf Hirota’s bilinear method and integrability] Jarmo Hietarinta, 2008 |
47번째 줄: | 64번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5> |
+ | |||
+ | |||
− | |||
− | |||
− | |||
* http://www.ams.org/mathscinet | * http://www.ams.org/mathscinet | ||
* http://www.zentralblatt-math.org/zmath/en/ | * http://www.zentralblatt-math.org/zmath/en/ | ||
+ | * http://arxiv.org/ | ||
+ | * http://www.pdf-search.org/ | ||
* http://pythagoras0.springnote.com/ | * http://pythagoras0.springnote.com/ | ||
− | * http://math.berkeley.edu/ | + | * [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html] |
− | |||
− | |||
* http://dx.doi.org/ | * http://dx.doi.org/ | ||
64번째 줄: | 80번째 줄: | ||
− | <h5 | + | <h5>question and answers(Math Overflow)</h5> |
* http://mathoverflow.net/search?q= | * http://mathoverflow.net/search?q= | ||
73번째 줄: | 89번째 줄: | ||
− | <h5 | + | <h5>blogs</h5> |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> | ||
+ | ** http://blogsearch.google.com/blogsearch?q=<br> | ||
** http://blogsearch.google.com/blogsearch?q= | ** http://blogsearch.google.com/blogsearch?q= | ||
− | + | * http://ncatlab.org/nlab/show/HomePage | |
83번째 줄: | 100번째 줄: | ||
− | <h5 | + | <h5>experts on the field</h5> |
* http://arxiv.org/ | * http://arxiv.org/ | ||
91번째 줄: | 108번째 줄: | ||
− | <h5 | + | <h5>links</h5> |
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | * [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier] | ||
− | * [http://www.research.att.com/ | + | * [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내] |
+ | * [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences] | ||
+ | * http://functions.wolfram.com/ |
2011년 3월 31일 (목) 07:08 판
introduction
Advantages of the bilinear formalism:
• Multisoliton solutions easy to construct.
• The dependent variables are usually tau-functions, with good properties.
• Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)
• Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.
- Integrable deformations of CFTs and the discrete Hirota equations
- Werner Nahm, Sinéad Keegan, 2009
- Werner Nahm, Sinéad Keegan, 2009
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
expositions
- Hirota’s bilinear method and integrability Jarmo Hietarinta, 2008
articles
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field