"Hirota bilinear method"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
57번째 줄: | 57번째 줄: | ||
<h5>books</h5> | <h5>books</h5> | ||
− | + | * Jarmo Hietarinta: Introduction to the Hirota Bilinear Method, volume 638 of Lect. Notes Phys. New York: Springer-Verlag 2004. | |
− | |||
* [[2011년 books and articles]] | * [[2011년 books and articles]] | ||
* http://library.nu/search?q= | * http://library.nu/search?q= | ||
70번째 줄: | 69번째 줄: | ||
* [http://users.utu.fi/hietarin/Bangalore.pdf Hirota’s bilinear method and integrability] Jarmo Hietarinta, 2008 | * [http://users.utu.fi/hietarin/Bangalore.pdf Hirota’s bilinear method and integrability] Jarmo Hietarinta, 2008 | ||
− | * [http://arxiv.org/abs/solv-int/9708006 Introduction to the Hirota bilinear method] J. Hietarinta | + | * [http://arxiv.org/abs/solv-int/9708006 Introduction to the Hirota bilinear method] J. Hietarinta, 1997[http://arxiv.org/abs/solv-int/9708006 ] |
− | |||
2011년 4월 21일 (목) 14:03 판
introduction
Advantages of the bilinear formalism:
- Multisoliton solutions easy to construct.
- The dependent variables are usually tau-functions, with good properties.
- Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)
- Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.
example
http://www.thehcmr.org/issue2_1/soliton.pdf
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://mathworld.wolfram.com/HirotaEquation.html
- http://www.scholarpedia.org/
- http://eom.springer.de
- http://www.proofwiki.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- Jarmo Hietarinta: Introduction to the Hirota Bilinear Method, volume 638 of Lect. Notes Phys. New York: Springer-Verlag 2004.
- 2011년 books and articles
- http://library.nu/search?q=
- http://library.nu/search?q=
expositions
- Hirota’s bilinear method and integrability Jarmo Hietarinta, 2008
- Introduction to the Hirota bilinear method J. Hietarinta, 1997[1]
articles
- Integrable deformations of CFTs and the discrete Hirota equations
- Werner Nahm, Sinéad Keegan, 2009
- Werner Nahm, Sinéad Keegan, 2009
- Ma, Wen-Xiu, and Yuncheng You. 2005. Solving the Korteweg-de Vries Equation by Its Bilinear Form: Wronskian Solutions. Transactions of the American Mathematical Society 357, no. 5 (May 1): 1753-1778.
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field