"Hirota bilinear method"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
57번째 줄: 57번째 줄:
 
<h5>books</h5>
 
<h5>books</h5>
  
 
+
* Jarmo Hietarinta: Introduction to the Hirota Bilinear Method, volume 638 of Lect. Notes Phys. New York: Springer-Verlag 2004.
 
 
 
* [[2011년 books and articles]]
 
* [[2011년 books and articles]]
 
* http://library.nu/search?q=
 
* http://library.nu/search?q=
70번째 줄: 69번째 줄:
  
 
* [http://users.utu.fi/hietarin/Bangalore.pdf Hirota’s bilinear method and integrability] Jarmo Hietarinta, 2008
 
* [http://users.utu.fi/hietarin/Bangalore.pdf Hirota’s bilinear method and integrability] Jarmo Hietarinta, 2008
* [http://arxiv.org/abs/solv-int/9708006 Introduction to the Hirota bilinear method]  J. Hietarinta
+
* [http://arxiv.org/abs/solv-int/9708006 Introduction to the Hirota bilinear method]  J. Hietarinta, 1997[http://arxiv.org/abs/solv-int/9708006 ]
* http://arxiv.org/abs/solv-int/9708006
 
  
 
 
 
 

2011년 4월 21일 (목) 14:03 판

introduction

 

 

 

 

Advantages of the bilinear formalism:
  • Multisoliton solutions easy to construct.
  • The dependent variables are usually tau-functions, with good properties.
  • Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)
  • Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.

 

 

example

http://www.thehcmr.org/issue2_1/soliton.pdf

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

expositions

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links