"Hirota bilinear method"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
69번째 줄: 69번째 줄:
  
 
* [http://arxiv.org/abs/nlin/0603008 Notes on solutions in Wronskian form to soliton equations: KdV-type], 2006
 
* [http://arxiv.org/abs/nlin/0603008 Notes on solutions in Wronskian form to soliton equations: KdV-type], 2006
 +
*  
 
* [http://users.utu.fi/hietarin/Bangalore.pdf Hirota’s bilinear method and integrability] Jarmo Hietarinta, 2008
 
* [http://users.utu.fi/hietarin/Bangalore.pdf Hirota’s bilinear method and integrability] Jarmo Hietarinta, 2008
 
* Goldstein, P. P. 2007. “Hints on the Hirota Bilinear Method”. <em>Acta Physica Polonica A</em> 112 (12월 1): 1171. http://adsabs.harvard.edu/abs/2007AcPPA.112.1171G
 
* Goldstein, P. P. 2007. “Hints on the Hirota Bilinear Method”. <em>Acta Physica Polonica A</em> 112 (12월 1): 1171. http://adsabs.harvard.edu/abs/2007AcPPA.112.1171G

2011년 5월 26일 (목) 09:14 판

introduction

 

 

 

 

Advantages of the bilinear formalism:
  • Multisoliton solutions easy to construct.
  • The dependent variables are usually tau-functions, with good properties.
  • Natural for the Sato theory, which explains hierarchies of integrable equations (Jimbo and Miwa)
  • Suitable for classification: the bilinear form strongly restricts the freedom of changing dependent variables.

 

 

example

http://www.thehcmr.org/issue2_1/soliton.pdf

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

expositions

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links