"Maass forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
11번째 줄: 11번째 줄:
 
* z = x + iy in the upper half-plane
 
* z = x + iy in the upper half-plane
 
* Re(s) > 1
 
* Re(s) > 1
* definition
+
* definition<br><math>E(z,s) ={1\over 2}\sum_{(m,n)=1}{y^s\over|mz+n|^{2s}}</math><br>
* <math>E(z,s) ={1\over 2}\sum_{(m,n)=1}{y^s\over|mz+n|^{2s}}</math>
+
*  Maass form<br><math>\DeltaE(z,s)=-y^2\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)E(z,s) = s(1-s)E(z,s)</math><br>
 
+
*  functional equation<br><math>E^{*}(z,s) = \pi^{-s}\Gamma(s)\zeta(2s)E(z,s) </math><br><math>E^{*}(z,s)=E^{*}(z,1-s)</math><br>
<math>\DeltaE(z,s)=-y^2\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)E(z,s) = s(1-s)E(z,s)</math>
+
* a unique pole of residue 3/π at s = 1
  
 
 
 
 

2010년 3월 5일 (금) 18:33 판

introduction
  • Hyperbolic distribution problems and half-integral weight Maass forms

 

 

Eisenstein series
  • z = x + iy in the upper half-plane
  • Re(s) > 1
  • definition
    \(E(z,s) ={1\over 2}\sum_{(m,n)=1}{y^s\over|mz+n|^{2s}}\)
  • Maass form
    \(\DeltaE(z,s)=-y^2\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)E(z,s) = s(1-s)E(z,s)\)
  • functional equation
    \(E^{*}(z,s) = \pi^{-s}\Gamma(s)\zeta(2s)E(z,s) \)
    \(E^{*}(z,s)=E^{*}(z,1-s)\)
  • a unique pole of residue 3/π at s = 1

 

 

Kloosterman sum
  • Fourier coefficients

 

 

history

 

 

related items

 

 

books

 

 

 

encyclopedia

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

articles

 

 

experts on the field

 

 

TeX