"Maass forms"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
62번째 줄: | 62번째 줄: | ||
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
+ | * [http://en.wikipedia.org/wiki/Kronecker_limit_formula ]http://en.wikipedia.org/wiki/Kronecker_limit_formula | ||
+ | * http://en.wikipedia.org/wiki/Real_analytic_Eisenstein_series | ||
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
* http://en.wikipedia.org/wiki/ | * http://en.wikipedia.org/wiki/ | ||
94번째 줄: | 96번째 줄: | ||
<h5>articles</h5> | <h5>articles</h5> | ||
− | |||
* [[2010년 books and articles|논문정리]] | * [[2010년 books and articles|논문정리]] | ||
* http://www.ams.org/mathscinet | * http://www.ams.org/mathscinet |
2010년 3월 5일 (금) 18:45 판
introduction
- Hyperbolic distribution problems and half-integral weight Maass forms
Eisenstein series
- z = x + iy in the upper half-plane
- Re(s) > 1
- definition
\(E(z,s) ={1\over 2}\sum_{(m,n)=1}{y^s\over|mz+n|^{2s}}\) - Maass form
\(\DeltaE(z,s)=-y^2\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)E(z,s) = s(1-s)E(z,s)\) - functional equation
\(E^{*}(z,s) = \pi^{-s}\Gamma(s)\zeta(2s)E(z,s) \)
\(E^{*}(z,s)=E^{*}(z,1-s)\) - a unique pole of residue 3/π at s = 1
Kloosterman sum
- Fourier coefficients
history
books
- 찾아볼 수학책
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
encyclopedia
- http://ko.wikipedia.org/wiki/
- [1]http://en.wikipedia.org/wiki/Kronecker_limit_formula
- http://en.wikipedia.org/wiki/Real_analytic_Eisenstein_series
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
blogs
- 구글 블로그 검색
articles
- 논문정리
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/
experts on the field