"Maass forms"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
25번째 줄: | 25번째 줄: | ||
* definition for prime p<br><math>S(a,b;p)=\sum_{1\leq x\leq p-1}{\exp(2i\pi (ax+b\bar{x})/p)},\quad\text{where}\quad x\bar{x}\equiv 1\text{ mod } p</math><br> | * definition for prime p<br><math>S(a,b;p)=\sum_{1\leq x\leq p-1}{\exp(2i\pi (ax+b\bar{x})/p)},\quad\text{where}\quad x\bar{x}\equiv 1\text{ mod } p</math><br> | ||
* generally defined as<br><math>K(a,b;m)=\sum_{0\leq x\leq m-1,\ gcd(x,m)=1 } e^{2\pi i (ax+bx^*)/m}</math><br> | * generally defined as<br><math>K(a,b;m)=\sum_{0\leq x\leq m-1,\ gcd(x,m)=1 } e^{2\pi i (ax+bx^*)/m}</math><br> | ||
+ | * http://blogs.ethz.ch/kowalski/2010/02/26/the-fourth-moment-of-kloosterman-sums/ | ||
+ | * Kloosterman, H. D. [http://www.springerlink.com/content/cq7681384842j128/?p=5679d1bb49fd45a3987db6d83a1147b6&pi=1 On the representation of numbers in the form ax² + by² + cz² + dt²], Acta Mathematica 49 (1926), pp. 407-464 | ||
+ | * | ||
48번째 줄: | 51번째 줄: | ||
<h5>books</h5> | <h5>books</h5> | ||
− | + | * Henryk Iwaniek, Emmanuel Kowalski (2004). Analytic number theory | |
− | |||
* [[4909919|찾아볼 수학책]]<br> | * [[4909919|찾아볼 수학책]]<br> | ||
− | * http://gigapedia.info/1/ | + | * http://gigapedia.info/1/Iwaniek |
* http://gigapedia.info/1/ | * http://gigapedia.info/1/ | ||
* http://gigapedia.info/1/ | * http://gigapedia.info/1/ |
2010년 3월 5일 (금) 19:10 판
introduction
- Hyperbolic distribution problems and half-integral weight Maass forms
Eisenstein series
- z = x + iy in the upper half-plane
- Re(s) > 1
- definition
\(E(z,s) ={1\over 2}\sum_{(m,n)=1}{y^s\over|mz+n|^{2s}}\) - Maass form
\(\DeltaE(z,s)=-y^2\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)E(z,s) = s(1-s)E(z,s)\) - functional equation
\(E^{*}(z,s) = \pi^{-s}\Gamma(s)\zeta(2s)E(z,s) \)
\(E^{*}(z,s)=E^{*}(z,1-s)\) - a unique pole of residue 3/π at s = 1
Kloosterman sum
- used to estimate the Fourier coefficients of modular forms
- definition for prime p
\(S(a,b;p)=\sum_{1\leq x\leq p-1}{\exp(2i\pi (ax+b\bar{x})/p)},\quad\text{where}\quad x\bar{x}\equiv 1\text{ mod } p\) - generally defined as
\(K(a,b;m)=\sum_{0\leq x\leq m-1,\ gcd(x,m)=1 } e^{2\pi i (ax+bx^*)/m}\) - http://blogs.ethz.ch/kowalski/2010/02/26/the-fourth-moment-of-kloosterman-sums/
- Kloosterman, H. D. On the representation of numbers in the form ax² + by² + cz² + dt², Acta Mathematica 49 (1926), pp. 407-464
history
books
- Henryk Iwaniek, Emmanuel Kowalski (2004). Analytic number theory
- 찾아볼 수학책
- http://gigapedia.info/1/Iwaniek
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
encyclopedia
- http://ko.wikipedia.org/wiki/
- [1]http://en.wikipedia.org/wiki/Kronecker_limit_formula
- http://en.wikipedia.org/wiki/Real_analytic_Eisenstein_series
- http://en.wikipedia.org/wiki/Kloosterman_sum
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
question and answers(Math Overflow)
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
- http://mathoverflow.net/search?q=
blogs
- 구글 블로그 검색
articles
- 논문정리
- http://www.ams.org/mathscinet
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- http://dx.doi.org/
experts on the field