"Maass forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
11번째 줄: 11번째 줄:
 
* Re(s) > 1
 
* Re(s) > 1
 
*  definition<br><math>E(z,s) ={1\over 2}\sum_{(m,n)=1}{y^s\over|mz+n|^{2s}}</math><br>
 
*  definition<br><math>E(z,s) ={1\over 2}\sum_{(m,n)=1}{y^s\over|mz+n|^{2s}}</math><br>
*  Maass form<br><math>\DeltaE(z,s)=-y^2\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)E(z,s) = s(1-s)E(z,s)</math><br>
+
*  Maass form<br><math>\Delta E(z,s)=-y^2\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)E(z,s) = s(1-s)E(z,s)</math><br>
 
*  functional equation<br><math>E^{*}(z,s) = \pi^{-s}\Gamma(s)\zeta(2s)E(z,s) </math><br><math>E^{*}(z,s)=E^{*}(z,1-s)</math><br>
 
*  functional equation<br><math>E^{*}(z,s) = \pi^{-s}\Gamma(s)\zeta(2s)E(z,s) </math><br><math>E^{*}(z,s)=E^{*}(z,1-s)</math><br>
 
* a unique pole of residue 3/π at s = 1
 
* a unique pole of residue 3/π at s = 1
26번째 줄: 26번째 줄:
 
* http://blogs.ethz.ch/kowalski/2010/02/26/the-fourth-moment-of-kloosterman-sums/
 
* http://blogs.ethz.ch/kowalski/2010/02/26/the-fourth-moment-of-kloosterman-sums/
 
* Kloosterman, H. D. [http://www.springerlink.com/content/cq7681384842j128/?p=5679d1bb49fd45a3987db6d83a1147b6&pi=1 On the representation of numbers in the form ax² + by² + cz² + dt²], Acta Mathematica 49 (1926), pp. 407-464
 
* Kloosterman, H. D. [http://www.springerlink.com/content/cq7681384842j128/?p=5679d1bb49fd45a3987db6d83a1147b6&pi=1 On the representation of numbers in the form ax² + by² + cz² + dt²], Acta Mathematica 49 (1926), pp. 407-464
*  
 
  
 
 
 
 
56번째 줄: 55번째 줄:
 
* http://gigapedia.info/1/Iwaniek
 
* http://gigapedia.info/1/Iwaniek
 
* http://gigapedia.info/1/Maass
 
* http://gigapedia.info/1/Maass
* http://gigapedia.info/1/
 
* http://gigapedia.info/1/
 
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
 
  
 
 
 
 
66번째 줄: 62번째 줄:
 
<h5>encyclopedia</h5>
 
<h5>encyclopedia</h5>
  
* http://ko.wikipedia.org/wiki/
 
 
* [http://en.wikipedia.org/wiki/Kronecker_limit_formula ]http://en.wikipedia.org/wiki/Kronecker_limit_formula
 
* [http://en.wikipedia.org/wiki/Kronecker_limit_formula ]http://en.wikipedia.org/wiki/Kronecker_limit_formula
 
* http://en.wikipedia.org/wiki/Real_analytic_Eisenstein_series
 
* http://en.wikipedia.org/wiki/Real_analytic_Eisenstein_series
 
* http://en.wikipedia.org/wiki/Kloosterman_sum
 
* http://en.wikipedia.org/wiki/Kloosterman_sum
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* Princeton companion to mathematics([[2910610/attachments/2250873|Companion_to_Mathematics.pdf]])
 
  
 
 
 
 
81번째 줄: 72번째 줄:
 
<h5>question and answers(Math Overflow)</h5>
 
<h5>question and answers(Math Overflow)</h5>
  
 +
* http://mathoverflow.net/questions/52744/what-is-the-relationship-between-modular-forms-and-maass-forms
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 
 
 
 
 
 
 
 
<h5>blogs</h5>
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
** http://blogsearch.google.com/blogsearch?q=
 
 
 
 
 
 
 
 
<h5>articles</h5>
 
 
* [[2010년 books and articles|논문정리]]
 
* http://www.ams.org/mathscinet
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
<h5>experts on the field</h5>
 
 
* http://arxiv.org/
 
 
 
 
 
 
 
 
<h5>TeX </h5>
 
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 

2012년 7월 22일 (일) 03:39 판

introduction
  • Hyperbolic distribution problems and half-integral weight Maass forms
  • Automorphic forms correspond to representations that occur in L2(G/Γ). In the case when G is SL2, holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of G, while Maass wave forms correspond to (spherical vectors of) continuous series representations of G.

 

Eisenstein series
  • z = x + iy in the upper half-plane
  • Re(s) > 1
  • definition
    \(E(z,s) ={1\over 2}\sum_{(m,n)=1}{y^s\over|mz+n|^{2s}}\)
  • Maass form
    \(\Delta E(z,s)=-y^2\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)E(z,s) = s(1-s)E(z,s)\)
  • functional equation
    \(E^{*}(z,s) = \pi^{-s}\Gamma(s)\zeta(2s)E(z,s) \)
    \(E^{*}(z,s)=E^{*}(z,1-s)\)
  • a unique pole of residue 3/π at s = 1

 

 

Kloosterman sum

 

 

history

 

 

related items

 

 

books

 

 

encyclopedia

 

 

question and answers(Math Overflow)