"Maass forms"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
11번째 줄: | 11번째 줄: | ||
* Re(s) > 1 | * Re(s) > 1 | ||
* definition<br><math>E(z,s) ={1\over 2}\sum_{(m,n)=1}{y^s\over|mz+n|^{2s}}</math><br> | * definition<br><math>E(z,s) ={1\over 2}\sum_{(m,n)=1}{y^s\over|mz+n|^{2s}}</math><br> | ||
− | * Maass form<br><math>\ | + | * Maass form<br><math>\Delta E(z,s)=-y^2\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)E(z,s) = s(1-s)E(z,s)</math><br> |
* functional equation<br><math>E^{*}(z,s) = \pi^{-s}\Gamma(s)\zeta(2s)E(z,s) </math><br><math>E^{*}(z,s)=E^{*}(z,1-s)</math><br> | * functional equation<br><math>E^{*}(z,s) = \pi^{-s}\Gamma(s)\zeta(2s)E(z,s) </math><br><math>E^{*}(z,s)=E^{*}(z,1-s)</math><br> | ||
* a unique pole of residue 3/π at s = 1 | * a unique pole of residue 3/π at s = 1 | ||
26번째 줄: | 26번째 줄: | ||
* http://blogs.ethz.ch/kowalski/2010/02/26/the-fourth-moment-of-kloosterman-sums/ | * http://blogs.ethz.ch/kowalski/2010/02/26/the-fourth-moment-of-kloosterman-sums/ | ||
* Kloosterman, H. D. [http://www.springerlink.com/content/cq7681384842j128/?p=5679d1bb49fd45a3987db6d83a1147b6&pi=1 On the representation of numbers in the form ax² + by² + cz² + dt²], Acta Mathematica 49 (1926), pp. 407-464 | * Kloosterman, H. D. [http://www.springerlink.com/content/cq7681384842j128/?p=5679d1bb49fd45a3987db6d83a1147b6&pi=1 On the representation of numbers in the form ax² + by² + cz² + dt²], Acta Mathematica 49 (1926), pp. 407-464 | ||
− | |||
56번째 줄: | 55번째 줄: | ||
* http://gigapedia.info/1/Iwaniek | * http://gigapedia.info/1/Iwaniek | ||
* http://gigapedia.info/1/Maass | * http://gigapedia.info/1/Maass | ||
− | |||
− | |||
− | |||
66번째 줄: | 62번째 줄: | ||
<h5>encyclopedia</h5> | <h5>encyclopedia</h5> | ||
− | |||
* [http://en.wikipedia.org/wiki/Kronecker_limit_formula ]http://en.wikipedia.org/wiki/Kronecker_limit_formula | * [http://en.wikipedia.org/wiki/Kronecker_limit_formula ]http://en.wikipedia.org/wiki/Kronecker_limit_formula | ||
* http://en.wikipedia.org/wiki/Real_analytic_Eisenstein_series | * http://en.wikipedia.org/wiki/Real_analytic_Eisenstein_series | ||
* http://en.wikipedia.org/wiki/Kloosterman_sum | * http://en.wikipedia.org/wiki/Kloosterman_sum | ||
− | |||
− | |||
− | |||
− | |||
81번째 줄: | 72번째 줄: | ||
<h5>question and answers(Math Overflow)</h5> | <h5>question and answers(Math Overflow)</h5> | ||
+ | * http://mathoverflow.net/questions/52744/what-is-the-relationship-between-modular-forms-and-maass-forms | ||
* http://mathoverflow.net/search?q= | * http://mathoverflow.net/search?q= | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
2012년 7월 22일 (일) 03:39 판
introduction
- Hyperbolic distribution problems and half-integral weight Maass forms
- Automorphic forms correspond to representations that occur in L2(G/Γ). In the case when G is SL2, holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of G, while Maass wave forms correspond to (spherical vectors of) continuous series representations of G.
Eisenstein series
- z = x + iy in the upper half-plane
- Re(s) > 1
- definition
\(E(z,s) ={1\over 2}\sum_{(m,n)=1}{y^s\over|mz+n|^{2s}}\) - Maass form
\(\Delta E(z,s)=-y^2\left(\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}\right)E(z,s) = s(1-s)E(z,s)\) - functional equation
\(E^{*}(z,s) = \pi^{-s}\Gamma(s)\zeta(2s)E(z,s) \)
\(E^{*}(z,s)=E^{*}(z,1-s)\) - a unique pole of residue 3/π at s = 1
Kloosterman sum
- used to estimate the Fourier coefficients of modular forms
- definition for prime p
\(S(a,b;p)=\sum_{1\leq x\leq p-1}{\exp(2i\pi (ax+b\bar{x})/p)},\quad\text{where}\quad x\bar{x}\equiv 1\text{ mod } p\) - generally defined as
\(K(a,b;m)=\sum_{0\leq x\leq m-1,\ gcd(x,m)=1 } e^{2\pi i (ax+bx^*)/m}\) - http://blogs.ethz.ch/kowalski/2010/02/26/the-fourth-moment-of-kloosterman-sums/
- Kloosterman, H. D. On the representation of numbers in the form ax² + by² + cz² + dt², Acta Mathematica 49 (1926), pp. 407-464
history
books
- Henryk Iwaniek, Emmanuel Kowalski (2004). Analytic number theory
- Lectures on modular functions of one complex variable (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 29)
- Hans Maass, (pdf)
- 찾아볼 수학책
- http://gigapedia.info/1/Iwaniek
- http://gigapedia.info/1/Maass
encyclopedia
- [1]http://en.wikipedia.org/wiki/Kronecker_limit_formula
- http://en.wikipedia.org/wiki/Real_analytic_Eisenstein_series
- http://en.wikipedia.org/wiki/Kloosterman_sum