"Maass forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
2번째 줄: 2번째 줄:
  
 
* Hyperbolic distribution problems and half-integral weight Maass forms
 
* Hyperbolic distribution problems and half-integral weight Maass forms
* Automorphic forms correspond to representations that occur in L2(G/Γ). In the case when G is SL2, holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of G, while Maass wave forms correspond to (spherical vectors of) continuous series representations of G.
+
* Automorphic forms correspond to representations that occur in $L_2(G/\Gamma)$. In the case when $G$ is $SL_2$, holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of $G$, while Maass wave forms correspond to (spherical vectors of) continuous series representations of G.
  
 
 
 
 
14번째 줄: 14번째 줄:
  
 
* used to estimate the Fourier coefficients of modular forms
 
* used to estimate the Fourier coefficients of modular forms
*  definition for prime p<br><math>S(a,b;p)=\sum_{1\leq x\leq p-1}{\exp(2i\pi (ax+b\bar{x})/p)},\quad\text{where}\quad x\bar{x}\equiv 1\text{ mod } p</math><br>
+
*  definition for prime p
*  generally defined as<br><math>K(a,b;m)=\sum_{0\leq x\leq m-1,\ gcd(x,m)=1 } e^{2\pi i (ax+bx^*)/m}</math><br>
+
;<math>S(a,b;p)=\sum_{1\leq x\leq p-1}{\exp(2i\pi (ax+b\bar{x})/p)},\quad\text{where}\quad x\bar{x}\equiv 1\text{ mod } p</math><br>
 +
*  generally defined as
 +
:<math>K(a,b;m)=\sum_{0\leq x\leq m-1,\ gcd(x,m)=1 } e^{2\pi i (ax+bx^*)/m}</math><br>
 
* http://blogs.ethz.ch/kowalski/2010/02/26/the-fourth-moment-of-kloosterman-sums/
 
* http://blogs.ethz.ch/kowalski/2010/02/26/the-fourth-moment-of-kloosterman-sums/
 
* Kloosterman, H. D. [http://www.springerlink.com/content/cq7681384842j128/?p=5679d1bb49fd45a3987db6d83a1147b6&pi=1 On the representation of numbers in the form ax² + by² + cz² + dt²], Acta Mathematica 49 (1926), pp. 407-464
 
* Kloosterman, H. D. [http://www.springerlink.com/content/cq7681384842j128/?p=5679d1bb49fd45a3987db6d83a1147b6&pi=1 On the representation of numbers in the form ax² + by² + cz² + dt²], Acta Mathematica 49 (1926), pp. 407-464
33번째 줄: 35번째 줄:
 
==related items==
 
==related items==
  
* [[harmonic Maass forms|examples of harmonic Maass Forms]]
+
* [[harmonic Maass forms]]
 +
* [[automorphic forms]]
  
 
 
 
 
44번째 줄: 47번째 줄:
 
*  Lectures on modular functions of one complex variable (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 29) <br>
 
*  Lectures on modular functions of one complex variable (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 29) <br>
 
** Hans Maass, ([[5323613/attachments/3133467|pdf]])
 
** Hans Maass, ([[5323613/attachments/3133467|pdf]])
* [[4909919|찾아볼 수학책]]<br>
 
* http://gigapedia.info/1/Iwaniek
 
* http://gigapedia.info/1/Maass
 
  
 
 
  
 
 
 
 
66번째 줄: 65번째 줄:
 
* http://mathoverflow.net/questions/52744/what-is-the-relationship-between-modular-forms-and-maass-forms
 
* http://mathoverflow.net/questions/52744/what-is-the-relationship-between-modular-forms-and-maass-forms
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
 +
 
[[분류:개인노트]]
 
[[분류:개인노트]]
[[분류:math and physics]]
 
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:math]]
 
[[분류:math]]
[[분류:automorphic forms]]
 

2013년 3월 17일 (일) 12:42 판

introduction

  • Hyperbolic distribution problems and half-integral weight Maass forms
  • Automorphic forms correspond to representations that occur in $L_2(G/\Gamma)$. In the case when $G$ is $SL_2$, holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of $G$, while Maass wave forms correspond to (spherical vectors of) continuous series representations of G.

 

Eisenstein series

 

Kloosterman sum

  • used to estimate the Fourier coefficients of modular forms
  • definition for prime p
\(S(a,b;p)=\sum_{1\leq x\leq p-1}{\exp(2i\pi (ax+b\bar{x})/p)},\quad\text{where}\quad x\bar{x}\equiv 1\text{ mod } p\)
  • generally defined as

\[K(a,b;m)=\sum_{0\leq x\leq m-1,\ gcd(x,m)=1 } e^{2\pi i (ax+bx^*)/m}\]

 

 

history

 

 

related items

 

 

books

  • Henryk Iwaniek, Emmanuel Kowalski (2004). Analytic number theory
  • Lectures on modular functions of one complex variable (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 29) 
    • Hans Maass, (pdf)


 

encyclopedia

 

 

question and answers(Math Overflow)