"Maass forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
8번째 줄: 8번째 줄:
  
 
 
 
 
 +
 +
==Maass form==
 +
* $f(z+1)=f(z)$ and $\Delta f=\lambda f$ where $\lambda = s(1-s)$ and $\Re s \geq 1/2$ imply
 +
$$
 +
f(x+iy)=\sum_{n\in \mathbb{Z}}a_n \sqrt{y}K_{s-1/2}(2\pi |n| y) e^{2\pi i n x}
 +
$$
 +
where $K_{\nu}$ is the modified Bessel function of the second kind
 +
* under the assumption that $f(x+iy)=f(-x+iy)$, we get
 +
$$
 +
f(x+iy)=\sum_{n=1}^{\infty}a_n \sqrt{y}K_{s-1/2}(2\pi n y) \cos (2\pi i n x)
 +
$$
 +
  
 
==Eisenstein series==
 
==Eisenstein series==
41번째 줄: 53번째 줄:
  
 
==computational resource==
 
==computational resource==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxMll2Y2lzeWg0UVE/edit
 
* http://www.math.chalmers.se/~sj/forskning/level11_2a.pdf
 
* http://www.math.chalmers.se/~sj/forskning/level11_2a.pdf
 
* http://www.ijpam.eu/contents/2009-54-2/12/12.pdf
 
* http://www.ijpam.eu/contents/2009-54-2/12/12.pdf

2013년 4월 15일 (월) 10:24 판

introduction

  • Hyperbolic distribution problems and half-integral weight Maass forms
  • Automorphic forms correspond to representations that occur in $L_2(\Gamma\backslash G)$.
  • In the case when $G$ is $SL_2$
    • holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of $G$
    • Maass wave forms correspond to (spherical vectors of) continuous series representations of G.

 

Maass form

  • $f(z+1)=f(z)$ and $\Delta f=\lambda f$ where $\lambda = s(1-s)$ and $\Re s \geq 1/2$ imply

$$ f(x+iy)=\sum_{n\in \mathbb{Z}}a_n \sqrt{y}K_{s-1/2}(2\pi |n| y) e^{2\pi i n x} $$ where $K_{\nu}$ is the modified Bessel function of the second kind

  • under the assumption that $f(x+iy)=f(-x+iy)$, we get

$$ f(x+iy)=\sum_{n=1}^{\infty}a_n \sqrt{y}K_{s-1/2}(2\pi n y) \cos (2\pi i n x) $$


Eisenstein series

 

Kloosterman sum

 

related items

 

 

books

  • Henryk Iwaniek, Emmanuel Kowalski (2004). Analytic number theory
  • Lectures on modular functions of one complex variable (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 29) 
    • Hans Maass, (pdf)


expositions


computational resource


encyclopedia


question and answers(Math Overflow)