"Maass forms"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
62번째 줄: 62번째 줄:
 
*  Lectures on modular functions of one complex variable (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 29) <br>
 
*  Lectures on modular functions of one complex variable (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 29) <br>
 
** Hans Maass, ([[5323613/attachments/3133467|pdf]])
 
** Hans Maass, ([[5323613/attachments/3133467|pdf]])
 
 
 
==expositions==
 
* Jianya Liu [http://www.prime.sdu.edu.cn/lectures/LiuMaassforms.pdf LECTURES ON MAASS FORMS]
 
  
  
86번째 줄: 81번째 줄:
  
 
* http://mathoverflow.net/questions/52744/what-is-the-relationship-between-modular-forms-and-maass-forms
 
* http://mathoverflow.net/questions/52744/what-is-the-relationship-between-modular-forms-and-maass-forms
 +
 +
 +
 +
==expositions==
 +
* Jianya Liu [http://www.prime.sdu.edu.cn/lectures/LiuMaassforms.pdf LECTURES ON MAASS FORMS]
 +
 +
 +
==articles==
 +
* Strömberg, Fredrik. “Computation of Maass Waveforms with Nontrivial Multiplier Systems.” Mathematics of Computation 77, no. 264 (2008): 2375–2416. doi:10.1090/S0025-5718-08-02129-7.
  
  

2015년 12월 26일 (토) 04:36 판

introduction

  • Hyperbolic distribution problems and half-integral weight Maass forms
  • Automorphic forms correspond to representations that occur in $L_2(\Gamma\backslash G)$.
  • In the case when $G$ is $SL(2,\mathbb{R})$
    • holomorphic modular forms correspond to (highest weight vectors of) discrete series representations of $G$
    • Maass wave forms correspond to (spherical vectors of) continuous series representations of G.

 

definition

  • A Maass (wave) form = continuous complex-valued function f of τ = x + iy in the upper half plane satisfying the following conditions:
    • f is invariant under the action of the group SL2(Z) on the upper half plane.
    • f is an eigenvector of the Laplacian operator \(\Delta=-y^2\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\)
    • f is of at most polynomial growth at cusps of SL2(Z).


two types of Maass forms

  • square integrable Maass forms ~ discrete spectrum
  • Eisenstein series ~ continuous spectrum


fourier expansion

  • $f(z+1)=f(z)$ and $\Delta f=\lambda f$ where $\lambda = s(1-s)$ and $\Re s \geq 1/2$ imply

$$ f(x+iy)=\sum_{n\in \mathbb{Z}}a_n \sqrt{y}K_{s-1/2}(2\pi |n| y) e^{2\pi i n x} $$ where $K_{\nu}$ is the modified Bessel function of the second kind

  • under the assumption that $f(x+iy)=f(-x+iy)$, we get

$$ f(x+iy)=\sum_{n=1}^{\infty}a_n \sqrt{y}K_{s-1/2}(2\pi n y) \cos (2\pi i n x) $$


examples

Eisenstein series


Maass-Poincare series

  • Hejhal
  • real analytic eigenfunction of the Laplacian with known singularities at \(i\infty\)

 

Kloosterman sum

 

related items

 

books

  • Henryk Iwaniek, Emmanuel Kowalski (2004). Analytic number theory
  • Lectures on modular functions of one complex variable (Tata Institute of Fundamental Research. Lectures on mathematics and physics. Mathematics, 29) 
    • Hans Maass, (pdf)


computational resource


encyclopedia


question and answers(Math Overflow)


expositions


articles

  • Strömberg, Fredrik. “Computation of Maass Waveforms with Nontrivial Multiplier Systems.” Mathematics of Computation 77, no. 264 (2008): 2375–2416. doi:10.1090/S0025-5718-08-02129-7.