"Dessin d'enfant"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
13번째 줄: 13번째 줄:
  
 
==expositions==
 
==expositions==
* Guillot, Pierre. 2014. “Some Computations with the Grothendieck-Teichm"uller Group and Equivariant Dessins D’enfants.” arXiv:1407.3112 [math], July. http://arxiv.org/abs/1407.3112.
 
 
* Planat, Michel. “Drawing Quantum Contextuality with ‘Dessins D’enfants’.” arXiv:1404.6986 [math-Ph, Physics:quant-Ph], April 28, 2014. http://arxiv.org/abs/1404.6986.
 
* Planat, Michel. “Drawing Quantum Contextuality with ‘Dessins D’enfants’.” arXiv:1404.6986 [math-Ph, Physics:quant-Ph], April 28, 2014. http://arxiv.org/abs/1404.6986.
 
* Jones, [http://www.emis.de/journals/SLC/wpapers/s35jones.pdf Dessins d'enfants: bipartite maps and Galois groups]
 
* Jones, [http://www.emis.de/journals/SLC/wpapers/s35jones.pdf Dessins d'enfants: bipartite maps and Galois groups]
22번째 줄: 21번째 줄:
  
 
==articles==
 
==articles==
 +
* Guillot, Pierre. 2014. “Some Computations with the Grothendieck-Teichm"uller Group and Equivariant Dessins D’enfants.” arXiv:1407.3112 [math], July. http://arxiv.org/abs/1407.3112.
 
* Kazarian, Maxim, and Peter Zograf. 2014. “Virasoro Constraints and Topological Recursion for Grothendieck’s Dessin Counting.” arXiv:1406.5976 [math], June. http://arxiv.org/abs/1406.5976.
 
* Kazarian, Maxim, and Peter Zograf. 2014. “Virasoro Constraints and Topological Recursion for Grothendieck’s Dessin Counting.” arXiv:1406.5976 [math], June. http://arxiv.org/abs/1406.5976.
  

2014년 7월 15일 (화) 06:39 판

memo


related items


encyclopedia


expositions


articles

  • Guillot, Pierre. 2014. “Some Computations with the Grothendieck-Teichm"uller Group and Equivariant Dessins D’enfants.” arXiv:1407.3112 [math], July. http://arxiv.org/abs/1407.3112.
  • Kazarian, Maxim, and Peter Zograf. 2014. “Virasoro Constraints and Topological Recursion for Grothendieck’s Dessin Counting.” arXiv:1406.5976 [math], June. http://arxiv.org/abs/1406.5976.


books

  • Guralnick, Robert M., and John Shareshian. 2007. Symmetric and Alternating Groups as Monodromy Groups of Riemann Surfaces I: Generic Covers and Covers with Many Branch Points. American Mathematical Soc.
  • Schneps, Leila, ed. 1994. The Grothendieck Theory of Dessins D’enfants. Vol. 200. London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press. http://www.ams.org/mathscinet-getitem?mr=1305390.