"Dessin d'enfant"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
21번째 줄: 21번째 줄:
  
 
==articles==
 
==articles==
 +
* Bose, Sownak, James Gundry, and Yang-Hui He. “Gauge Theories and Dessins d’Enfants: Beyond the Torus.” arXiv:1410.2227 [hep-Th], October 8, 2014. http://arxiv.org/abs/1410.2227.
 
* Guillot, Pierre. 2014. “Some Computations with the Grothendieck-Teichm"uller Group and Equivariant Dessins D’enfants.” arXiv:1407.3112 [math], July. http://arxiv.org/abs/1407.3112.
 
* Guillot, Pierre. 2014. “Some Computations with the Grothendieck-Teichm"uller Group and Equivariant Dessins D’enfants.” arXiv:1407.3112 [math], July. http://arxiv.org/abs/1407.3112.
 
* Kazarian, Maxim, and Peter Zograf. 2014. “Virasoro Constraints and Topological Recursion for Grothendieck’s Dessin Counting.” arXiv:1406.5976 [math], June. http://arxiv.org/abs/1406.5976.
 
* Kazarian, Maxim, and Peter Zograf. 2014. “Virasoro Constraints and Topological Recursion for Grothendieck’s Dessin Counting.” arXiv:1406.5976 [math], June. http://arxiv.org/abs/1406.5976.
 
 
  
 
==books==
 
==books==
 
* Guralnick, Robert M., and John Shareshian. 2007. Symmetric and Alternating Groups as Monodromy Groups of Riemann Surfaces I: Generic Covers and Covers with Many Branch Points. American Mathematical Soc.
 
* Guralnick, Robert M., and John Shareshian. 2007. Symmetric and Alternating Groups as Monodromy Groups of Riemann Surfaces I: Generic Covers and Covers with Many Branch Points. American Mathematical Soc.
 
* Schneps, Leila, ed. 1994. The Grothendieck Theory of Dessins D’enfants. Vol. 200. London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press. http://www.ams.org/mathscinet-getitem?mr=1305390.
 
* Schneps, Leila, ed. 1994. The Grothendieck Theory of Dessins D’enfants. Vol. 200. London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press. http://www.ams.org/mathscinet-getitem?mr=1305390.

2014년 10월 11일 (토) 05:00 판

memo


related items


encyclopedia


expositions

articles

  • Bose, Sownak, James Gundry, and Yang-Hui He. “Gauge Theories and Dessins d’Enfants: Beyond the Torus.” arXiv:1410.2227 [hep-Th], October 8, 2014. http://arxiv.org/abs/1410.2227.
  • Guillot, Pierre. 2014. “Some Computations with the Grothendieck-Teichm"uller Group and Equivariant Dessins D’enfants.” arXiv:1407.3112 [math], July. http://arxiv.org/abs/1407.3112.
  • Kazarian, Maxim, and Peter Zograf. 2014. “Virasoro Constraints and Topological Recursion for Grothendieck’s Dessin Counting.” arXiv:1406.5976 [math], June. http://arxiv.org/abs/1406.5976.

books

  • Guralnick, Robert M., and John Shareshian. 2007. Symmetric and Alternating Groups as Monodromy Groups of Riemann Surfaces I: Generic Covers and Covers with Many Branch Points. American Mathematical Soc.
  • Schneps, Leila, ed. 1994. The Grothendieck Theory of Dessins D’enfants. Vol. 200. London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press. http://www.ams.org/mathscinet-getitem?mr=1305390.