"Andrews-Garvan crank modular form"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | $$ | ||
+ | C(w;q)=\frac{(q)_{\infty}}{(wq;q)_{\infty}(w^{-1}q;q)_{\infty}} | ||
+ | $$ | ||
+ | * specialization $C(-1;q)=b(q)$ where | ||
+ | $$b(q)=q^{1/24}\frac{\eta(\tau)}{\eta(2\tau)}\theta(-q)$$ | ||
+ | * see [[3rd order mock theta functions]] | ||
+ | |||
+ | ==related items== | ||
+ | * [[Dyson's rank generating function]] | ||
+ | * [[Quantum modular forms]] | ||
+ | |||
+ | |||
+ | ==computational resources== | ||
+ | * https://docs.google.com/file/d/0B8XXo8Tve1cxbG1sMTgwX1A4MEk/edit | ||
+ | |||
+ | |||
+ | [[분류:Mock modular forms]] | ||
+ | [[분류:migrate]] |
2020년 11월 13일 (금) 17:22 판
introduction
$$ C(w;q)=\frac{(q)_{\infty}}{(wq;q)_{\infty}(w^{-1}q;q)_{\infty}} $$
- specialization $C(-1;q)=b(q)$ where
$$b(q)=q^{1/24}\frac{\eta(\tau)}{\eta(2\tau)}\theta(-q)$$